Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 246: 116225, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38761519

ABSTRACT

We developed and validated a bioanalytical assay to quantify delamanid and its key metabolite (DM-6705) in breast milk and aimed to quantify the secretion of these compounds in breast milk. Due to the hydrophobic nature of the analytes, special care was taken during sample preparation to prevent the formation of fatty deposits during protein precipitation. This was followed by online solid phase extraction and liquid chromatography with tandem mass spectrometry for detection. A Restek Viva BiPh C18 column (1.0 mm×50 mm, 5 µm) was used for extraction while chromatographic separation was performed using a Waters Xterra MS C18 (2.1 mm×100 mm, 5 µm) analytical column with an isocratic mobile phase consisting of acetonitrile, methanol, and 5 mM ammonium carbonate. The mass spectrometric detection of the analytes was performed using an AB Sciex 3200 mass spectrometer employing electrospray ionisation in the positive mode with multiple reaction motoring of the relevant precursor and product ions. Delamanid-d4 and OPC-14714 were used as internal standards. A quadratic (weighted 1/x concentration) regression was used to fit calibration curves for delamanid and DM-6705 over the concentration range of 10.0 - 1000 ng/mL. The intra- and inter-day validation accuracies of the quality control samples were between 92.1% and 98.3% for delamanid, and 97.0% and 102.8% for DM-6705. The percentage coefficient of variation (precision) was less than 7.8%. To our knowledge, this is the first report describing the concentrations of delamanid and DM-6705 in the breast milk of patients treated for rifampicin-resistant tuberculosis.


Subject(s)
Milk, Human , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Milk, Human/chemistry , Humans , Female , Oxazoles/analysis , Chromatography, Liquid/methods , Solid Phase Extraction/methods , Reproducibility of Results , Limit of Detection , Calibration , Chromatography, High Pressure Liquid/methods , Guanidines
2.
J Mass Spectrom Adv Clin Lab ; 31: 8-16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38188986

ABSTRACT

Objective: To develop and validate an assay for the analysis of bedaquiline and its M2 metabolite in human breast milk. Methods: The analytes were extracted using solid phase extraction following protein precipitation. Quantification was performed with liquid chromatography coupled with tandem mass spectrometry. Chromatographic separation was achieved using gradient chromatography on a Poroshell 120 SB-C18 analytical column at 40 °C, with a flow rate of 350 µL/minute and a total run time of eight minutes. An AB Sciex 3000 mass spectrometer with electrospray ionization in the positive mode was used for detection, employing multiple reaction monitoring scan mode. Bedaquiline-d6 and M2-d3-13C were used as internal standards. Results: Calibrations curves for bedaquiline and M2 exhibited quadratic (weighted 1/x concentration) regressions over the respective concentration ranges of 0.0780 to 5.00 µg/mL and 0.0312 to 2.00 µg/mL. Inter- and intra-day validation accuracies ranged between 96.7 % and 103.5 % for bedaquiline, and 104.2 % to 106.5 % for M2, with a coefficient of variation below 9.2 % for both compounds. Conclusion: The developed assay demonstrated selectivity and robustness, enabling differentiation between bedaquiline and M2 within the context of endogenous compounds from six separate lots of breast milk samples. Successful application was observed in the analysis of breast milk samples sourced from patients treated for multidrug-resistant tuberculosis within a clinical study setting.

3.
Br J Clin Pharmacol ; 88(8): 3548-3558, 2022 08.
Article in English | MEDLINE | ID: mdl-35526837

ABSTRACT

AIMS: We aimed to explore the effect of pregnancy on bedaquiline pharmacokinetics (PK) and describe bedaquiline exposure in the breast milk of mothers treated for rifampicin-resistant tuberculosis (TB), where there are no human data available. METHODS: We performed a longitudinal PK study in pregnant women treated for rifampicin-resistant TB to explore the effect of pregnancy on bedaquiline exposure. Pharmacokinetic sampling was performed at 4 time-points over 6 hours in the third trimester, and again at approximately 6 weeks postpartum. We obtained serial breast milk samples from breastfeeding mothers, and a single plasma sample taken from breastfed and nonbreastfed infants to assess bedaquiline exposure. We used liquid chromatography-tandem mass spectrometry to perform the breast milk and plasma bedaquiline assays, and population PK modelling to interpret the bedaquiline concentrations. RESULTS: We recruited 13 women, 6 of whom completed the ante- and postpartum PK sampling. All participants were HIV-positive on antiretroviral therapy. We observed lower ante- and postpartum bedaquiline exposures than reported in nonpregnant controls. Bedaquiline concentrations in breast milk were higher than maternal plasma (milk to maternal plasma ratio: 14:1). A single random plasma bedaquiline and M2 concentration was available in 4 infants (median age: 6.5 wk): concentrations in the 1 breastfed infant were similar to maternal plasma concentrations; concentrations in the 3 nonbreastfed infants were detectable but lower than maternal plasma concentrations. CONCLUSION: We report low exposure of bedaquiline in pregnant women treated for rifampicin-resistant TB. Bedaquiline significantly accumulates in breast milk; breastfed infants receive mg/kg doses of bedaquiline equivalent to maternal doses.


Subject(s)
Breast Feeding , Tuberculosis, Multidrug-Resistant , Child , Diarylquinolines/therapeutic use , Female , Humans , Infant , Milk, Human/chemistry , Pregnancy , Rifampin/pharmacology , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy
4.
J Pharm Biomed Anal ; 215: 114774, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35462285

ABSTRACT

A robust analytical method based on liquid chromatography coupled to tandem mass spectrometry was developed and validated to quantify rifapentine and 25-O-desacetyl rifapentine in human breast milk to aid in determining the breastfed infant risk to the excreted drug in human milk. Samples were extracted by a combination of protein precipitation and solid phase extraction using rifampicin-d3 as an internal standard. An Agilent® Poroshell 120 EC-C18 (4.6 mm × 50 mm, 2.7 µm) column was used for chromatographic separation employing an isocratic mobile phase consisting of acetonitrile: methanol: 0.1% formic acid (55/5/40, v/v/v) at a flow rate of 450 µL/min, and with a total run time of four minutes. Mass detection was on an AB Sciex API 4000 mass spectrometer using electrospray ionization in the positive mode and based on multiple reaction monitoring data acquisition. Rifapentine was accurately quantified across a concentration range of 2.00-2000 ng/mL and 25-O-desacetyl rifapentine from 4.00 to 2000 ng/mL. During validation, the inter- and intra-day accuracy and precision at the tested QC concentrations (N = 18) for rifapentine were between 97.4% and 100.6%, and 3.1% and 8.3%, respectively. The inter- and intra-day accuracy and precision for 25-O-desacetyl rifapentine were between 96.4% and 106.3%, and 6.7% and 11.8%, respectively. No significant matrix effects were observed, and the method was shown to be specific for rifapentine and 25-O-desacetyl rifapentine. Human milk samples (N = 22) generated during a phase I/II clinical trial were successfully analysed for rifapentine and 25-O-desacetyl rifapentine using this validated method. Concentrations for rifapentine and 25-O-desacetyl rifapentine in human milk samples (N = 22) ranged from 11.2-1180 ng/mL and 7.11-573 ng/mL, respectively.


Subject(s)
Milk, Human , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Female , Humans , Reproducibility of Results , Rifampin/analogs & derivatives , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
5.
OMICS ; 20(9): 528-37, 2016 09.
Article in English | MEDLINE | ID: mdl-27631192

ABSTRACT

Medicinal plants are part of the healthcare systems worldwide, especially in low- and middle-income countries. African lettuce (Launaea taraxacifolia) is cultivated extensively in Africa, from Senegal in the west to Ethiopia and Tanzania in the east, and in Southern Africa. Potential anticancer effects of L. taraxacifolia have been suggested, but little is known about putative molecular mechanisms or potential for herb-drug interactions through inhibition or induction of drug-metabolizing enzymes. We investigated the effects of crude aqueous extracts of L. taraxacifolia on growth kinetics and cell cycle progression of the WHC01 esophageal cancer cells. Antiproliferative and apoptotic effects were evaluated using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and flow cytometry, while examining, in parallel, the genes regulating apoptosis and cell cycle in this cell culture model. In addition, we tested the inhibitory and enzyme kinetic effects of the aqueous L. taraxacifolia using recombinant human CYP450 isozyme model systems (CYP1A2, CYP2C9, and CYP2C19). L. taraxacifolia exhibited a significant growth inhibitory effect on the WHC01 cancer cells. Most cell cycle genes were downregulated. Cell cycle analysis showed a G0-G1 cell cycle arrest in WHC01 cells in the presence of L. taraxacifolia extract, accompanied by morphological changes. L. taraxacifolia extract treatment resulted in downregulation of expression levels of CYP1A2 (p < 0.0005) and CYP2C19 (p < 0.003) by 50-70%. L. taraxacifolia extract caused reversible and time-dependent inhibition of the recombinant CYP1A2, CYP2C9, and CYP2C19. This study provides new insights on possible anticancer effects of L. taraxacifolia, a widely used medicinal plant in parts of Africa and across the world especially by patients with cancer. Further mechanistic studies expanding on these observations would be timely and contribute to the field of global precision medicine that requires solid understanding of drug and herb molecular mechanisms of action and drug-herb interaction potentials, given the worldwide use of medicinal plants.


Subject(s)
Antineoplastic Agents/pharmacology , Cytochrome P-450 CYP1A2/drug effects , Cytochrome P-450 CYP2C19/drug effects , Cytochrome P-450 CYP2C9/drug effects , Herb-Drug Interactions , Lactuca/chemistry , Plant Extracts/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Isoenzymes , Pharmacogenomic Testing , Plant Extracts/chemistry , Plants, Medicinal , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL