Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0294775, 2023.
Article in English | MEDLINE | ID: mdl-38015916

ABSTRACT

Synthetic insecticides heavily applied to manage agricultural pests are highly hazardous to the environment and non-target organisms. Their overuse through repeated treatments in smallholder farming communities is frequent. Botanical biopesticides are ideal for sustainable pest management in agricultural environments by keeping synthetic insecticide use at a minimum. Here we evaluated a locally prepared neem seed extract (NSE) alongside emamectin benzoate against both lepidopteran pests Helicoverpa armigera (Hübner) and Spodoptera exigua (Hübner) on tomato Lycopersicon esculentum Mill under natural field conditions in Pakistan. We compared pest severity, fruit injury, quality, marketability, and cost:benefit ratio (CBR) between treatments. The concentration of azadirachtin A in the NSE was 26.5 ppm. NSE at 2% (20 mL/L) and the emamectin benzoate at the recommended field rate in Pakistan were sprayed weekly throughout the fruiting stage. The pest larvae were significantly more abundant on fruits than on flowers and leaves. Fruit injury and losses were significantly more important in untreated control compared to NSE and emamectin benzoate treatments. NSE efficacy varied with respect to the cultivars used and the seasons. Cultivar Eden harboured more pests than Adventa, and emamectin benzoate suppressed more pest individuals than NSE. Both the insecticidal treatments were comparable in terms of marketable yield productions as well as unmarketable, uninjured, and recovered fruit yields. NSE generated a higher CBR (1: 9.26) than emamectin benzoate (1: 3.23). NSE suppressed pests by acting as an antifeedant, similar to its synthetic counterpart. Smallholder growers can thus use NSE as a cost-effective solution in tomato pest management in Pakistan.


Subject(s)
Insecticides , Solanum lycopersicum , Humans , Animals , Biological Control Agents , Farmers , Cost-Benefit Analysis , Developing Countries , Insecticides/pharmacology , Pest Control , Larva
2.
Proc Biol Sci ; 289(1988): 20221695, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36475436

ABSTRACT

Insect pests are a major challenge to smallholder crop production in sub-Saharan Africa (SSA), where access to synthetic pesticides, which are linked to environmental and health risks, is often limited. Biological control interventions could offer a sustainable solution, yet an understanding of their effectiveness is lacking. We used a meta-analysis approach to investigate the effectiveness of commonly used biocontrol interventions and botanical pesticides on pest abundance (PA), crop damage (CD), crop yield (Y) and natural enemy abundance (NEA) when compared with controls with no biocontrol and with synthetic pesticides. We also evaluated whether the magnitude of biocontrol effectiveness was affected by type of biocontrol intervention, crop type, pest taxon, farm type and landscape configuration. Overall, from 99 studies on 31 crops, we found that compared to no biocontrol, biocontrol interventions reduced PA by 63%, CD by over 50% and increased Y by over 60%. Compared to synthetic pesticides, biocontrol resulted in comparable PA and Y, while NEA was 43% greater. Our results also highlighted that the potential for biocontrol to be modulated by landscape configuration is a critical knowledge gap in SSA. We show that biocontrol represents an effective tool for smallholder farmers, which can maintain yields without associated negative pesticide effects. Furthermore, the evidence presented here advocates strongly for including biocontrol practices in national and regional agricultural policies.


Subject(s)
Crops, Agricultural , Pest Control, Biological , Africa South of the Sahara
3.
Eur J Clin Nutr ; 75(10): 1475-1482, 2021 10.
Article in English | MEDLINE | ID: mdl-33531639

ABSTRACT

BACKGROUND/OBJECTIVES: Increasing dietary diversity is a viable strategy for addressing micronutrient malnutrition in women of childbearing age (WCA) from low-income countries. Recently, it has been demonstrated that some indigenous vegetables (IV) with high nutrient density may help to ameliorate micronutrient's intake. The Minimum Dietary Diversity index for Women (MDD-W) could be considered as a proxy to describe one important dimension of women's diet quality. This cross-sectional study aimed at exploring aspects contributing to micronutrients adequacy in Tanzanian WCA, with a focus on IV consumption and other socio-demographic factors. SUBJECTS/METHODS: Data collection was conducted among urban and peri-urban women in Arusha city, Tanzania. Socio-demographic factors were collected using a structured interview. Information on IV consumption and MDD-W calculation were obtained using a 24-h recall. RESULTS: One-hundred and forty-one women aged 14-49 years were interviewed. Sixteen per cent of the sample consumed at least one portion of IV/day. The total median MDD-W was 4.0 (IQR. 3.0-5.0) and it was adequate in the 44% of the sample. Women who consumed IV had MDD-W 0.66 points (95% CI: 0.02-1.30, p = 0.046) higher than those who did not; consuming IV had an odds ratio of more than three times concerning women not consuming IV (OR: 3.30, 95% CI: 1.24-8.81, p = 0.017). CONCLUSIONS: The IV consumption is positively associated with micronutrient adequacy and its absence from the diet can be an indicator of micronutrient deficiencies in vulnerable people such as WCA. For that reason, this study suggests that IV consumption may improve micronutrient deficiency in WCA.


Subject(s)
Micronutrients , Vegetables , Cross-Sectional Studies , Diet , Eating , Humans , Micronutrients/analysis , Nutritional Status , Tanzania
4.
Plants (Basel) ; 9(2)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979332

ABSTRACT

Common bean (Phaseolus vulgaris) is an important food and cash crop in many countries. Bean crop yields in sub-Saharan Africa are on average 50% lower than the global average, which is largely due to severe problems with pests and diseases as well as poor soil fertility exacerbated by low-input smallholder production systems. Recent on-farm research in eastern Africa has shown that commonly available plants with pesticidal properties can successfully manage arthropod pests. However, reducing common bean yield gaps still requires further sustainable solutions to other crop provisioning services such as soil fertility and plant nutrition. Smallholder farmers using pesticidal plants have claimed that the application of pesticidal plant extracts boosts plant growth, potentially through working as a foliar fertiliser. Thus, the aims of the research presented here were to determine whether plant growth and yield could be enhanced and which metabolic processes were induced through the application of plant extracts commonly used for pest control in eastern Africa. Extracts from Tephrosia vogelii and Tithonia diversifolia were prepared at a concentration of 10% w/v and applied to potted bean plants in a pest-free screen house as foliar sprays as well as directly to the soil around bean plants to evaluate their contribution to growth, yield and potential changes in primary or secondary metabolites. Outcomes of this study showed that the plant extracts significantly increased chlorophyll content, the number of pods per plant and overall seed yield. Other increases in metabolites were observed, including of rutin, phenylalanine and tryptophan. The plant extracts had a similar effect to a commercially available foliar fertiliser whilst the application as a foliar spray was better than applying the extract to the soil. These results suggest that pesticidal plant extracts can help overcome multiple limitations in crop provisioning services, enhancing plant nutrition in addition to their established uses for crop pest management.

5.
Plants (Basel) ; 8(12)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842487

ABSTRACT

Tephrosia vogelii is a plant species chemically characterized by the presence of entomotoxic rotenoids and used widely across Africa as a botanical pesticide. Phytochemical analysis was conducted to establish the presence and abundance of the bioactive principles in this species across three countries in East Africa: Tanzania, Kenya, and Malawi. Analysis of methanolic extracts of foliar parts of T. vogelii revealed the occurrence of two distinct chemotypes that were separated by the presence of rotenoids in one, and flavanones and flavones that are not bioactive against insects on the other. Specifically, chemotype 1 contained deguelin as the major rotenoid along with tephrosin, and rotenone as a minor component, while these compounds were absent from chemotype 2, which contained previously reported flavanones and flavones including obovatin-3-O-methylether. Chemotype 3 contained a combination of the chemical profiles of both chemotype 1 and 2 suggesting a chemical hybrid. Plant samples identified as chemotype 1 showed chemical consistency across seasons and altitudes, except in the wet season where a significant difference was observed for samples in Tanzania. Since farmers are unable to determine the chemical content of material available care must be taken in promoting this species for pest management without first establishing efficacy. While phytochemical analysis serves as an important tool for quality control of pesticidal plants, where analytical facilities are not available simple bioassays could be developed to enable extension staff and farmers to determine the efficacy of their plants and ensure only effective materials are adopted.

6.
Front Plant Sci ; 9: 1425, 2018.
Article in English | MEDLINE | ID: mdl-30323823

ABSTRACT

In the fight against arthropod crop pests using plant secondary metabolites, most research has focussed on the identification of bioactive molecules. Several hundred candidate plant species and compounds are now known to have pesticidal properties against a range of arthropod pest species. Despite this growing body of research, few natural products are commercialized for pest management whilst on-farm use of existing botanically-based pesticides remains a small, but growing, component of crop protection practice. Uptake of natural pesticides is at least partly constrained by limited data on the trade-offs of their use on farm. The research presented here assessed the potential trade-offs of using pesticidal plant extracts on legume crop yields and the regulating ecosystem services of natural pests enemies. The application of six established pesticidal plants (Bidens pilosa, Lantana camara, Lippia javanica, Tephrosia vogelii, Tithonia diversifolia, and Vernonia amygdalina) were compared to positive and negative controls for their impact on yields of bean (Phaseolus vulgaris), cowpea (Vigna unguiculata), and pigeon pea (Cajanus cajan) crops and the abundance of key indicator pest and predatory arthropod species. Analysis of field trials showed that pesticidal plant treatments often resulted in crop yields that were comparable to the use of a synthetic pesticide (lambda-cyhalothrin). The best-performing plant species were T. vogelii, T. diversifolia, and L. javanica. The abundance of pests was very low when using the synthetic pesticide, whilst the plant extracts generally had a higher number of pests than the synthetic but lower numbers than observed on the negative controls. Beneficial arthropod numbers were low with synthetic treated crops, whereas the pesticidal plant treatments appeared to have little effect on beneficials when compared to the negative controls. The outcomes of this research suggest that using extracts of pesticidal plants to control pests can be as effective as synthetic insecticides in terms of crop yields while tritrophic effects were reduced, conserving the non-target arthropods that provide important ecosystem services such as pollination and pest regulation. Thus managing crop pests using plant secondary metabolites can be more easily integrated in to agro-ecologically sustainable crop production systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...