Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heart ; 103(6): 421-427, 2017 03.
Article in English | MEDLINE | ID: mdl-27566296

ABSTRACT

OBJECTIVE: Inadequate right ventricular (RV) and pulmonary arterial (PA) functional responses to exercise are important yet poorly understood features of pulmonary arterial hypertension (PAH). This study combined invasive catheterisation with echocardiography to assess RV afterload, RV function and ventricular-vascular coupling in subjects with PAH. METHODS: Twenty-six subjects with PAH were prospectively recruited to undergo right heart catheterisation and Doppler echocardiography at rest and during incremental exercise, and cardiac MRI at rest. Measurements at rest included basic haemodynamics, RV function and coupling efficiency (η). Measurements during incremental exercise included pulmonary vascular resistance (Z0), characteristic impedance (ZC, a measure of proximal PA stiffness) and proximal and distal PA compliance (CPA). RESULTS: In patients with PAH, the proximal PAs were significantly stiffer at maximum exercise (ZC =2.31±0.38 vs 1.33±0.15 WU×m2 at rest; p=0.003) and PA compliance was decreased (CPA=0.88±0.10 vs 1.32±0.17 mL/mm Hg/m2 at rest; p=0.0002). Z0 did not change with exercise. As a result, the resistance-compliance (RC) time decreased with exercise (0.67±0.05 vs 1.00±0.07 s at rest; p<10-6). When patients were grouped according to resting coupling efficiency, those with poorer η exhibited stiffer proximal PAs at rest, a lower maximum exercise level, and more limited CPA reduction at maximum exercise. CONCLUSIONS: In PAH, exercise causes proximal and distal PA stiffening, which combined with preserved Z0 results in decreased RC time with exercise. Stiff PAs at rest may also contribute to poor haemodynamic coupling, reflecting reduced pulmonary vascular reserve that contributes to limit the maximum exercise level tolerated.


Subject(s)
Arterial Pressure , Exercise Tolerance , Exercise , Hypertension, Pulmonary/physiopathology , Pulmonary Artery/physiopathology , Vascular Stiffness , Ventricular Function, Right , Adult , Aged , Cardiac Catheterization , Chicago , Echocardiography, Doppler , Echocardiography, Stress/methods , Exercise Test , Female , Humans , Hypertension, Pulmonary/diagnosis , Magnetic Resonance Imaging , Male , Middle Aged , Prospective Studies , Vascular Resistance , Wisconsin
2.
Pulm Circ ; 5(3): 547-56, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26401256

ABSTRACT

Ranolazine, a late inward sodium current and fatty acid oxidation inhibitor, may improve right ventricular (RV) function in pulmonary arterial hypertension (PAH); however, the safety and efficacy of ranolazine in humans with PAH is unknown. Therefore, we sought to (1) determine whether ranolazine is safe and well tolerated in PAH and (2) explore ranolazine's effect on symptoms, exercise capacity, RV structure and function, and hemodynamic characteristics. We therefore conducted a 3-month, prospective, open-label pilot study involving patients with symptomatic PAH (n = 11) and echocardiographic evidence of RV dysfunction. We evaluated the safety and tolerability of ranolazine and compared symptoms, exercise capacity, exercise bicycle echocardiographic parameters, and invasive hemodynamic parameters between baseline and 3 months of ranolazine therapy using paired t tests. Of the 11 patients enrolled, one discontinued ranolazine therapy due to a drug-drug interaction after 3 days of therapy. All 10 of the remaining patients continued therapy for 3 months, and 8 (80%) of 10 completed all study tests. After 3 months, ranolazine administration was safe and associated with improvement in functional class (P = 0.0013), reduction in RV size (P = 0.015), improved RV function (improvement in RV strain during exercise at 3 months; P = 0.037), and a trend toward improved exercise time and exercise watts on bicycle echocardiography (P = 0.06 and 0.01, respectively). Ranolazine was not associated with improvement in invasive hemodynamic parameters. In conclusion, in a pilot study involving PAH, ranolazine therapy was safe and well tolerated, and it resulted in improvement in symptoms and echocardiographic parameters of RV structure and function but did not alter invasive hemodynamic parameters. ClinicalTrials.gov Identifier: NCT01174173.

SELECTION OF CITATIONS
SEARCH DETAIL
...