Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Article in English | MEDLINE | ID: mdl-35980074

ABSTRACT

BACKGROUND: Calcium ions play a key role in the heart's functional activity. The steadystate levels of calcium are contingent on the calcium regulating hormonal system, impairment of which might result in the development of cardiac pathology. An important role in these processes is also attributed to the specific inflammatory mediator, HMGB1, one of the damage-associated molecular patterns (DAMPs) released by immune cells or cell damage. OBJECTIVE: This study investigated the cardioprotective potential of the calcium-regulating hormonal system in cardiomyopathies with an emphasis on the possible role of HMGB1. METHODS: Ca2+ and inorganic phosphate levels were determined in the serum using an electrolyte analyzer and spectrophotometric analyzer correspondingly. The 1-34 fragment of parathyroid hormone (PTH), calcitonin, vitamin D, and HMGB1 were detected using ELISA kits. RESULTS: The levels of PTH, calcitonin, phosphate, and HMGB1 were found elevated in females suffering from cardiomyopathy. The same tendency was observed in men; however, statistically significant changes were registered only for PTH and phosphate. CONCLUSION: It can be suggested that among other reasons, the decrease of the left ventricular function in cardiomyopathy patients can be linked to the high HMGB1, whereas the activation of the calciumregulating system as manifested by the elevated PTH aims at restoration of calcium homeostasis and thus have positive, i.e. cardioprotective consequences.


Subject(s)
Bone Density Conservation Agents , Cardiomyopathies , HMGB1 Protein , Female , Male , Humans , Calcium , Calcitonin , Calcium, Dietary , Parathyroid Hormone
2.
Sci Adv ; 7(36): eabi6856, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34516913

ABSTRACT

Interindividual variability in drug response constitutes a major concern in pharmacotherapy. While polymorphisms in genes involved in drug disposition have been extensively studied, drug target variability remains underappreciated. By mapping the genomic variability of all human drug target genes onto high-resolution crystal structures of drug target complexes, we identified 1094 variants localized within 6 Å of drug-binding pockets and directly affecting their geometry, topology, or physicochemical properties. We experimentally show that binding site variants affect pharmacodynamics with marked drug- and variant-specific differences. In addition, we demonstrate that a common BCHE variant confers resistance to tacrine and rivastigmine, which can be overcome by the use of derivatives based on squaric acid scaffolds or tryptophan conjugation. These findings underscore the importance of genetic drug target variability and demonstrate that integration of genomic data and structural information can inform personalized drug selection and genetically guided drug development to overcome resistance.

3.
Respir Physiol Neurobiol ; 294: 103746, 2021 12.
Article in English | MEDLINE | ID: mdl-34302993

ABSTRACT

The molecular mechanisms of obstructive sleep apnea (OSA), in particular the gene expression patterns in whole blood of patients with OSA, can shed more light on the underlying pathophysiology of OSA and suggest potential biomarkers. In the current study, we have enrolled thirty patients with untreated moderate-severe OSA together with 20 BMI, age, and sex-matched controls and 15 normal-weight controls. RNA-sequencing of whole blood and home sleep apnea testing were performed in the untreated state and after three and twelve months of continuous positive airway pressure (CPAP) treatment. Analysis of the whole blood transcriptome of the patients with OSA revealed a unique pattern of differential expression with a significant number of downregulated immune-related genes including many heavy and light chain immunoglobulins and interferon-inducible genes. This was confirmed by the gene ontology analysis demonstrating enrichment with the biological processes associated with various immune functions. Expression of these genes was recovered after three months of CPAP treatment. After 12 months of CPAP treatment, the overall gene expression profile returns to the initial, untreated level. In addition, we have confirmed the importance of choosing BMI-matched controls as a reference group as opposed to normal-weight healthy individuals based on the significantly different gene expression signatures between these two groups.


Subject(s)
Continuous Positive Airway Pressure , Outcome Assessment, Health Care , Sleep Apnea, Obstructive/blood , Sleep Apnea, Obstructive/therapy , Transcriptome/physiology , Adult , Aged , Body Mass Index , Female , Gene Ontology , Humans , Longitudinal Studies , Male , Middle Aged , Sequence Analysis, RNA , Time Factors
4.
J Investig Med ; 69(6): 1148-1152, 2021 08.
Article in English | MEDLINE | ID: mdl-33952612

ABSTRACT

Growing evidence suggests an important role of the inflammatory component in heart failure (HF). Recent developments in this field indicate an ambiguous role that innate immunity plays in immune-driven HF. Damaged or stressed cells, cardiomyocytes, in particular, emit damage-associated molecular patterns (DAMPs) including HMGB1, S100 A8/A9, HSP70, and other molecules, unfolding paracrine mechanisms that induce an innate immune response. Designed as an adaptive, regenerative reaction, innate immunity may nevertheless become overactivated and thus contribute to the development of HF by altering the pacemaker rhythm, contraction, and electromechanical coupling, presumably by impairing the calcium homeostasis. The current review will explore a hypothesis of the involvement of the calcium-regulating hormones such as parathyroid hormone and parathyroid hormone-related protein in counteracting the detrimental impact of the excess of DAMPs and therefore improving the functional cardiac characteristics especially in the acute phase of the disease.


Subject(s)
Calcium-Regulating Hormones and Agents , Heart Failure , Immunity, Innate , Inflammation/physiopathology , Calcium , Heart Failure/immunology , Heart Failure/physiopathology , Humans
5.
Acta Anaesthesiol Scand ; 65(9): 1276-1284, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34028012

ABSTRACT

BACKGROUND: Apnoeic oxygenation using Transnasal Humidified Rapid-Insufflation Ventilatory Exchange (THRIVE) during general anaesthesia prolongs the safe apnoeic period. However, there is a gap of knowledge how THRIVE-induced hyperoxia and hypercapnia impact vital organs. The primary aim of this randomised controlled trial was to characterise oxidative stress and, secondary, vital organ function biomarkers during THRIVE compared to mechanical ventilation (MV). METHODS: Thirty adult patients, American Society of Anesthesiologists (ASA) 1-2, undergoing short laryngeal surgery under general anaesthesia were randomised to THRIVE, FI O2 1.0, 70 L min-1 during apnoea or MV. Blood biomarkers for oxidative stress, malondialdehyde and TAC and vital organ function were collected (A) preoperatively, (B) at procedure completion and (C) at PACU discharge. RESULTS: Mean apnoea time was 17.9 (4.8) min and intubation to end-of-surgery time was 28.1 (12.8) min in the THRIVE and MV group, respectively. Malondialdehyde increased from 11.2 (3.1) to 12.7 (3.1) µM (P = .02) and from 9.5 (2.2) to 11.6 (2.6) µM (P = .003) (A to C) in the THRIVE and MV group, respectively. S100B increased from 0.05 (0.02) to 0.06 (0.02) µg L-1 (P = .005) (A to C) in the THRIVE group. No increase in TAC, CRP, leukocyte count, troponin-T, NTproBNP, creatinine, eGFRcrea or NSE was demonstrated during THRIVE. CONCLUSION: While THRIVE and MV was associated with increased oxidative stress, we found no change in cardiac, inflammation or kidney biomarkers during THRIVE. Further evaluation of stress and inflammatory response and cerebral and cardiac function during THRIVE is needed.


Subject(s)
Insufflation , Administration, Intranasal , Adult , Airway Management , Biomarkers , Humans , Oxidative Stress , Respiration, Artificial
6.
Front Immunol ; 12: 824696, 2021.
Article in English | MEDLINE | ID: mdl-35116043

ABSTRACT

Surgical interventions rapidly trigger a cascade of molecular, cellular, and neural signaling responses that ultimately reach remote organs, including the brain. Using a mouse model of orthopedic surgery, we have previously demonstrated hippocampal metabolic, structural, and functional changes associated with cognitive impairment. However, the nature of the underlying signals responsible for such periphery-to-brain communication remains hitherto elusive. Here we present the first exploratory study that tests the hypothesis of extracellular vesicles (EVs) as potential mediators carrying information from the injured tissue to the distal organs including the brain. The primary goal was to investigate whether the cargo of circulating EVs after surgery can undergo quantitative changes that could potentially trigger phenotypic modifications in the target tissues. EVs were isolated from the serum of the mice subjected to a tibia surgery after 6, 24, and 72 h, and the proteome and miRNAome were investigated using mass spectrometry and RNA-seq approaches. We found substantial differential expression of proteins and miRNAs starting at 6 h post-surgery and peaking at 24 h. Interestingly, one of the up-regulated proteins at 24 h was α-synuclein, a pathogenic hallmark of certain neurodegenerative syndromes. Analysis of miRNA target mRNA and corresponding biological pathways indicate the potential of post-surgery EVs to modify the extracellular matrix of the recipient cells and regulate metabolic processes including fatty acid metabolism. We conclude that surgery alters the cargo of circulating EVs in the blood, and our results suggest EVs as potential systemic signal carriers mediating remote effects of surgery on the brain.


Subject(s)
Biomarkers , Extracellular Vesicles/metabolism , Wounds and Injuries/metabolism , Animals , Chemical Fractionation , Chromatography, Liquid , Disease Models, Animal , Disease Susceptibility , Extracellular Vesicles/ultrastructure , Mice , MicroRNAs/genetics , Proteome , Proteomics/methods , RNA, Messenger/genetics , Surgical Procedures, Operative/adverse effects , Tandem Mass Spectrometry , Wounds and Injuries/blood , Wounds and Injuries/etiology
7.
Br J Anaesth ; 126(2): 467-476, 2021 02.
Article in English | MEDLINE | ID: mdl-33183737

ABSTRACT

BACKGROUND: Postoperative neurocognitive decline is a frequent complication in adult patients undergoing major surgery with increased risk for morbidity and mortality. The mechanisms behind cognitive decline after anaesthesia and surgery are not known. We studied the association between CSF and blood biomarkers of neuronal injury or brain amyloidosis and long-term changes in neurocognitive function. METHODS: In patients undergoing major orthopaedic surgery (knee or hip replacement), blood and CSF samples were obtained before surgery and then at 4, 8, 24, 32, and 48 h after skin incision through an indwelling spinal catheter. CSF and blood concentrations of total tau (T-tau), neurofilament light, neurone-specific enolase and amyloid ß (Aß1-42) were measured. Neurocognitive function was assessed using the International Study of Postoperative Cognitive Dysfunction (ISPOCD) test battery 1-2 weeks before surgery, at discharge from the hospital (2-5 days after surgery), and at 3 months after surgery. RESULTS: CSF and blood concentrations of T-tau, neurone-specific enolase, and Aß1-42 increased after surgery. A similar increase in serum neurofilament light was seen with no overall changes in CSF concentrations. There were no differences between patients having a poor or good late postoperative neurocognitive outcome with respect to these biomarkers of neuronal injury and Aß1-42. CONCLUSIONS: The findings of the present explorative study showed that major orthopaedic surgery causes a release of CSF markers of neural injury and brain amyloidosis, suggesting neuronal damage or stress. We were unable to detect an association between the magnitude of biomarker changes and long-term postoperative neurocognitive dysfunction.


Subject(s)
Amyloidosis/cerebrospinal fluid , Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Knee/adverse effects , Biomarkers/cerebrospinal fluid , Brain Injuries/cerebrospinal fluid , Postoperative Cognitive Complications/etiology , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Amyloidosis/complications , Amyloidosis/diagnosis , Brain Injuries/complications , Brain Injuries/diagnosis , Cognition , Female , Humans , Male , Neurofilament Proteins/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Phosphopyruvate Hydratase/cerebrospinal fluid , Postoperative Cognitive Complications/cerebrospinal fluid , Postoperative Cognitive Complications/diagnosis , Postoperative Cognitive Complications/psychology , Prospective Studies , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome , tau Proteins/cerebrospinal fluid
8.
Exp Physiol ; 105(9): 1634-1647, 2020 09.
Article in English | MEDLINE | ID: mdl-32652583

ABSTRACT

NEW FINDINGS: What is the central question of this study? Are carotid bodies (CBs) modulated by the damage-associated molecular patterns (DAMPs) and humoral factors of aseptic tissue injury? What are the main findings and their importance? DAMPs (HMGB1, S100 A8/A9) and blood plasma from rats subjected to tibia surgery, a model of aseptic injury, stimulate the release of neurotransmitters (ATP, dopamine) and TNF-α from ex vivo rat CBs. All-thiol HMGB1 mediates upregulation of immune-related biological pathways. These data suggest regulation of CB function by endogenous mediators of innate immunity. ABSTRACT: The glomus cells of carotid bodies (CBs) are the primary sensors of arterial partial O2 and CO2 tensions and moreover serve as multimodal receptors responding also to other stimuli, such as pathogen-associated molecular patterns (PAMPs) produced by acute infection. Modulation of CB function by excessive amounts of these immunomodulators is suggested to be associated with a detrimental hyperinflammatory state. We have hypothesized that yet another class of immunomodulators, endogenous danger-associated molecular patterns (DAMPs), released upon aseptic tissue injury and recognized by the same pathogen recognition receptors as PAMPs, might modulate the CB activity in a fashion similar to PAMPs. We have tested this hypothesis by exposing rat CBs to various DAMPs, such as HMGB1 (all-thiol and disulfide forms) and S100 A8/A9 in a series of ex vivo experiments that demonstrated the release of dopamine and ATP, neurotransmitters known to mediate CB homeostatic responses. We observed a similar response after incubating CBs with conditioned blood plasma obtained from the rats subjected to tibia surgery, a model of aseptic injury. In addition, we have investigated global gene expression in the rat CB using an RNA sequencing approach. Differential gene expression analysis showed all-thiol HMGB1-driven upregulation of a number of prominent pro-inflammatory markers including Il1α and Il1ß. Interestingly, conditioned plasma had a more profound effect on the CB transcriptome resulting in inhibition rather than activation of the immune-related pathways. These data are the first to suggest potential modulation of CB function by endogenous mediators of innate immunity.


Subject(s)
Alarmins/metabolism , Carotid Body/metabolism , Neurotransmitter Agents/metabolism , Wounds and Injuries/metabolism , Adenosine Triphosphate/metabolism , Animals , Calgranulin A , Calgranulin B , Dopamine/metabolism , Gene Expression , HMGB1 Protein , Male , Rats , Rats, Sprague-Dawley , Tibia/surgery
9.
Ann Neurol ; 87(3): 370-382, 2020 03.
Article in English | MEDLINE | ID: mdl-31930549

ABSTRACT

OBJECTIVE: Long-term cognitive decline is an adverse outcome after major surgery associated with increased risk for mortality and morbidity. We studied the cerebrospinal fluid (CSF) and serum biochemical inflammatory response to a standardized orthopedic surgical procedure and the possible association with long-term changes in cognitive function. We hypothesized that the CSF inflammatory response pattern after surgery would differ in patients having long-term cognitive decline defined as a composite cognitive z score of ≥1.0 compared to patients without long-term cognitive decline at 3 months postsurgery. METHODS: Serum and CSF biomarkers of inflammation and blood-brain barrier (BBB) integrity were measured preoperatively and up to 48 hours postoperatively, and cognitive function was assessed preoperatively and at 2 to 5 days and 3 months postoperatively. RESULTS: Surgery was associated with a pronounced increase in inflammatory biomarkers in both CSF and blood throughout the 48-hour study period. A principal component (PC) analysis was performed on 52 inflammatory biomarkers. The 2 first PC (PC1 and PC2) construct outcome variables on CSF biomarkers were significantly associated with long-term cognitive decline at 3 months, but none of the PC construct serum variables showed a significant association with long-term cognitive decline at 3 months. Patients both with and patients without long-term cognitive decline showed early transient increases of the astroglial biomarkers S-100B and glial fibrillary acidic protein in CSF, and in BBB permeability (CSF/serum albumin ratio). INTERPRETATION: Surgery rapidly triggers a temporal neuroinflammatory response closely associated with long-term cognitive outcome postsurgery. The findings of this explorative study require validation in a larger surgical patient cohort. Ann Neurol 2020;87:370-382.


Subject(s)
Glial Fibrillary Acidic Protein/cerebrospinal fluid , Postoperative Cognitive Complications/blood , Postoperative Cognitive Complications/cerebrospinal fluid , S100 Calcium Binding Protein beta Subunit/cerebrospinal fluid , Aged , Blood-Brain Barrier/metabolism , Case-Control Studies , Female , Humans , Inflammation Mediators/blood , Inflammation Mediators/cerebrospinal fluid , Male , Orthopedic Procedures/adverse effects , Permeability , Time Factors
10.
Pharmacogenomics J ; 19(2): 115-126, 2019 04.
Article in English | MEDLINE | ID: mdl-30206299

ABSTRACT

Prediction of phenotypic consequences of mutations constitutes an important aspect of precision medicine. Current computational tools mostly rely on evolutionary conservation and have been calibrated on variants associated with disease, which poses conceptual problems for assessment of variants in poorly conserved pharmacogenes. Here, we evaluated the performance of 18 current functionality prediction methods leveraging experimental high-quality activity data from 337 variants in genes involved in drug metabolism and transport and found that these models only achieved probabilities of 0.1-50.6% to make informed conclusions. We therefore developed a functionality prediction framework optimized for pharmacogenetic assessments that significantly outperformed current algorithms. Our model achieved 93% for both sensitivity and specificity for both loss-of-function and functionally neutral variants, and we confirmed its superior performance using cross validation analyses. This novel model holds promise to improve the translation of personal genetic information into biological conclusions and pharmacogenetic recommendations, thereby facilitating the implementation of Next-Generation Sequencing data into clinical diagnostics.


Subject(s)
Genetic Privacy , Inactivation, Metabolic/genetics , Pharmacogenetics/trends , Pharmacogenomic Variants/genetics , Algorithms , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation, Missense/genetics , Pharmacogenomic Testing/methods , Precision Medicine
11.
Front Pharmacol ; 9: 1437, 2018.
Article in English | MEDLINE | ID: mdl-30564131

ABSTRACT

Up to half of all patients do not respond to pharmacological treatment as intended. A substantial fraction of these inter-individual differences is due to heritable factors and a growing number of associations between genetic variations and drug response phenotypes have been identified. Importantly, the rapid progress in Next Generation Sequencing technologies in recent years unveiled the true complexity of the genetic landscape in pharmacogenes with tens of thousands of rare genetic variants. As each individual was found to harbor numerous such rare variants they are anticipated to be important contributors to the genetically encoded inter-individual variability in drug effects. The fundamental challenge however is their functional interpretation due to the sheer scale of the problem that renders systematic experimental characterization of these variants currently unfeasible. Here, we review concepts and important progress in the development of computational prediction methods that allow to evaluate the effect of amino acid sequence alterations in drug metabolizing enzymes and transporters. In addition, we discuss recent advances in the interpretation of functional effects of non-coding variants, such as variations in splice sites, regulatory regions and miRNA binding sites. We anticipate that these methodologies will provide a useful toolkit to facilitate the integration of the vast extent of rare genetic variability into drug response predictions in a precision medicine framework.

12.
Adv Exp Med Biol ; 1071: 25-33, 2018.
Article in English | MEDLINE | ID: mdl-30357730

ABSTRACT

How hypoxia regulates gene expression in the human carotid body (CB) remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the impact of important post-transcriptional regulators, such as non-coding RNAs, and in particular miRNAs is not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentially regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins.


Subject(s)
Carotid Body/physiology , Hypoxia , MicroRNAs/genetics , Gene Expression Regulation , Humans , In Vitro Techniques
13.
Front Med (Lausanne) ; 5: 192, 2018.
Article in English | MEDLINE | ID: mdl-30023358

ABSTRACT

The liver fulfills central roles in metabolic control and detoxification and, as such, is continuously exposed to a plethora of insults. Importantly, the liver has a unique ability to regenerate and can completely recoup from most acute, non-iterative insults. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease (NAFLD), long-term alcohol abuse and chronic use of certain medications, can cause persistent injury in which the regenerative capacity eventually becomes dysfunctional, resulting in hepatic scaring and cirrhosis. Calcium is a versatile secondary messenger that regulates multiple hepatic functions, including lipid and carbohydrate metabolism, as well as bile secretion and choleresis. Accordingly, dysregulation of calcium signaling is a hallmark of both acute and chronic liver diseases. In addition, recent research implicates calcium transients as essential components of liver regeneration. In this review, we provide a comprehensive overview of the role of calcium signaling in liver health and disease and discuss the importance of calcium in the orchestration of the ensuing regenerative response. Furthermore, we highlight similarities and differences in spatiotemporal calcium regulation between liver insults of different etiologies. Finally, we discuss intracellular calcium control as an emerging therapeutic target for liver injury and summarize recent clinical findings of calcium modulation for the treatment of ischemic-reperfusion injury, cholestasis and NAFLD.

14.
Hum Genomics ; 12(1): 26, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29793534

ABSTRACT

BACKGROUND: Variability in genes implicated in drug pharmacokinetics or drug response can modulate treatment efficacy or predispose to adverse drug reactions. Besides common genetic polymorphisms, recent sequencing projects revealed a plethora of rare genetic variants in genes encoding proteins involved in drug metabolism, transport, and response. RESULTS: To understand the global importance of rare pharmacogenetic gene variants, we mapped the variability in 208 pharmacogenes by analyzing exome sequencing data from 60,706 unrelated individuals and estimated the importance of rare and common genetic variants using a computational prediction framework optimized for pharmacogenetic assessments. Our analyses reveal that rare pharmacogenetic variants were strongly enriched in mutations predicted to cause functional alterations. For more than half of the pharmacogenes, rare variants account for the entire genetic variability. Each individual harbored on average a total of 40.6 putatively functional variants, rare variants accounting for 10.8% of these. Overall, the contribution of rare variants was found to be highly gene- and drug-specific. Using warfarin, simvastatin, voriconazole, olanzapine, and irinotecan as examples, we conclude that rare genetic variants likely account for a substantial part of the unexplained inter-individual differences in drug metabolism phenotypes. CONCLUSIONS: Combined, our data reveal high gene and drug specificity in the contributions of rare variants. We provide a proof-of-concept on how this information can be utilized to pinpoint genes for which sequencing-based genotyping can add important information to predict drug response, which provides useful information for the design of clinical trials in drug development and the personalization of pharmacological treatment.


Subject(s)
Biomarkers, Pharmacological , Pharmacogenetics/trends , Pharmacogenomic Variants/genetics , Polymorphism, Single Nucleotide/genetics , Exome/genetics , Genotype , Humans , Phenotype
15.
Exp Cell Res ; 352(2): 412-419, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28238835

ABSTRACT

The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentially regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins.


Subject(s)
Carotid Body/metabolism , Hypoxia/metabolism , MicroRNAs/genetics , Oxygen/metabolism , Adult , Aged , Aged, 80 and over , Cell Hypoxia , Cells, Cultured , Humans , Hypoxia/genetics , Male , MicroRNAs/metabolism , Middle Aged
16.
Biochem Biophys Res Commun ; 482(3): 399-407, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27789285

ABSTRACT

The liver fulfills critical metabolic functions, such as controlling blood sugar and ammonia levels, and is of central importance for lipid metabolism and detoxification of environmental and chemical agents, including drugs. Liver injuries of different etiology can elicit a spectrum of responses. Some hepatocytes initiate molecular programs resulting in cell death, whereas others undergo cellular divisions to regenerate the damaged organ. Interestingly, recent research indicates that microRNAs serve as very rapid as well as long-term regulators in these processes. In this review, we discuss their importance in liver disease etiology and progression as well as for therapy with particular focus on metabolic and inflammatory conditions. Furthermore, we highlight the central role of microRNAs in controlling hepatocyte differentiation and plasticity, which are required for successful regeneration, but under certain conditions, such as chronic liver insults, can result in the formation of hepatocellular carcinoma.


Subject(s)
Liver/injuries , Liver/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Cell Death/genetics , Cell Death/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver Regeneration/genetics , Liver Regeneration/physiology , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Metabolic Diseases/pathology
17.
Anesthesiology ; 125(4): 700-15, 2016 10.
Article in English | MEDLINE | ID: mdl-27483127

ABSTRACT

BACKGROUND: In contrast to general anesthetics such as propofol, dexmedetomidine when used for sedation has been put forward as a drug with minimal effects on respiration. To obtain a more comprehensive understanding of the regulation of breathing during sedation with dexmedetomidine, the authors compared ventilatory responses to hypoxia and hypercapnia during sedation with dexmedetomidine and propofol. METHODS: Eleven healthy male volunteers entered this randomized crossover study. Sedation was administered as an intravenous bolus followed by an infusion and monitored by Observer's Assessment of Alertness/Sedation (OAA/S) scale, Richmond Agitation Sedation Scale, and Bispectral Index Score. Hypoxic and hypercapnic ventilatory responses were measured at rest, during sedation (OAA/S 2 to 4), and after recovery. Drug exposure was verified with concentration analysis in plasma. RESULTS: Ten subjects completed the study. The OAA/S at the sedation goal was 3 (3 to 4) (median [minimum to maximum]) for both drugs. Bispectral Index Score was 82 ± 8 and 75 ± 3, and the drug concentrations in plasma at the sedation target were 0.66 ± 0.14 and 1.26 ± 0.36 µg/ml for dexmedetomidine and propofol, respectively. Compared with baseline, sedation reduced hypoxic ventilation to 59 and 53% and the hypercapnic ventilation to 82 and 86% for dexmedetomidine and propofol, respectively. In addition, some volunteers displayed upper airway obstruction and episodes of apnea during sedation. CONCLUSIONS: Dexmedetomidine-induced sedation reduces ventilatory responses to hypoxia and hypercapnia to a similar extent as sedation with propofol. This finding implies that sedation with dexmedetomidine interacts with both peripheral and central control of breathing.


Subject(s)
Dexmedetomidine/pharmacology , Hypnotics and Sedatives/pharmacology , Hypoxia/physiopathology , Propofol/pharmacology , Respiration/drug effects , Adolescent , Adult , Cross-Over Studies , Humans , Hypercapnia/physiopathology , Male , Reference Values , Young Adult
18.
Hepatology ; 64(5): 1743-1756, 2016 11.
Article in English | MEDLINE | ID: mdl-27532775

ABSTRACT

Hepatocytes are dynamic cells that, upon injury, can alternate between nondividing differentiated and dedifferentiated proliferating states in vivo. However, in two-dimensional cultures, primary human hepatocytes (PHHs) rapidly dedifferentiate, resulting in loss of hepatic functions that significantly limits their usefulness as an in vitro model of liver biology, liver diseases, as well as drug metabolism and toxicity. Thus, understanding the underlying mechanisms and stalling of the dedifferentiation process would be highly beneficial to establish more-accurate and relevant long-term in vitro hepatocyte models. Here, we present comprehensive analyses of whole proteome and transcriptome dynamics during the initiation of dedifferentiation during the first 24 hours of culture. We report that early major rearrangements of the noncoding transcriptome, hallmarked by increased expression of small nucleolar RNAs, long noncoding RNAs, microRNAs (miRNAs), and ribosomal genes, precede most changes in coding genes during dedifferentiation of PHHs, and we speculated that these modulations could drive the hepatic dedifferentiation process. To functionally test this hypothesis, we globally inhibited the miRNA machinery using two established chemically distinct compounds, acriflavine and poly-l-lysine. These inhibition experiments resulted in a significantly impaired miRNA response and, most important, in a pronounced reduction in the down-regulation of hepatic genes with importance for liver function. Thus, we provide strong evidence for the importance of noncoding RNAs, in particular, miRNAs, in hepatic dedifferentiation, which can aid the development of more-efficient differentiation protocols for stem-cell-derived hepatocytes and broaden our understanding of the dynamic properties of hepatocytes with respect to liver regeneration. CONCLUSION: miRNAs are important drivers of hepatic dedifferentiation, and our results provide valuable information regarding the mechanisms behind liver regeneration and possibilities to inhibit dedifferentiation in vitro. (Hepatology 2016;64:1743-1756).


Subject(s)
Cell Dedifferentiation/genetics , Hepatocytes/physiology , MicroRNAs/physiology , Adult , Aged , Cells, Cultured , Female , Humans , Male , Middle Aged , Transcriptome
19.
Drug Metab Rev ; 48(3): 369-78, 2016 08.
Article in English | MEDLINE | ID: mdl-27257736

ABSTRACT

CYP2W1 is expressed in the course of development of the gastrointestinal tract, silenced after birth in intestine and colon by epigenetic modifications, but activated following demethylation in colorectal cancer (CRC). The expression levels in CRC positively correlate with the degree of malignancy, are higher in metastases and are predictive of colon cancer survival. The CYP2W1 transcripts have been detected also in hepatocellular carcinoma, adrenocortical carcinoma, childhood rhabdomyosarcoma and breast cancer; however, here the protein expression remains to be confirmed. The CYP2W1 enzyme has an inverted orientation in the endoplasmic reticulum membrane, as compared to other cytochrome P450s and its immediate electron donor is unknown. Several lipid ligands have been proposed as endogenous substrates, among which retinol derivatives appear to have the highest affinities. However, the role of CYP2W1 in the endogenous and tumor localized metabolism of retinol derivatives has yet to be clarified. Indolines constitute high affinity exogenous compounds and specific chloromethylindolines have been shown to be activated by CYP2W1 into cytotoxic products in vitro and also in vivo, inhibiting the growth of human colon tumors in a mouse xenograft model. The CRC specific localization of CYP2W1 and its effective prodrug activation makes it a very promising target for future development of cancer therapeutics.


Subject(s)
Cytochrome P450 Family 2/metabolism , Gene Expression Regulation, Enzymologic , Prodrugs/metabolism , Animals , Biotransformation , Cytochrome P450 Family 2/genetics , Epigenesis, Genetic , Humans , Indoles/metabolism , Neoplasms/metabolism , Vitamin A/analogs & derivatives , Vitamin A/metabolism
20.
Sci Rep ; 6: 25187, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27143246

ABSTRACT

Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/physiopathology , Hepatocytes/drug effects , Hepatocytes/physiology , Spheroids, Cellular/drug effects , Spheroids, Cellular/physiology , Arabinofuranosyluracil/analogs & derivatives , Arabinofuranosyluracil/toxicity , Cells, Cultured , Humans , Models, Biological , Proof of Concept Study , Proteome/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...