Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 343(1-3): 111-33, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15862840

ABSTRACT

This study presents the results of an environmental assessment of mercury (Hg) contamination in the Rwamagasa artisanal gold mining area, northwest Tanzania, and the potential downstream dispersion along the River Malagarasi to Lake Tanganyika. At the time of sampling, generally low concentrations of Hg (<0.05 mg/kg) occurred in most cultivated soils although higher Hg (0.05-9.2 mg/kg) was recorded in urban soils and vegetable plot soils where these are impacted by Hg-contaminated water and sediment derived from mineral processing activities. Hg in vegetable and grain samples is mostly below the detection limit of 0.004 mg/kg Hg, apart from 0.007 and 0.092 mg/kg Hg in two yam samples and 0.011 to 0.013 mg/kg Hg in three rice samples. The standardized (i.e., standardized to 10 cm length) Hg concentrations in Clarias spp. increase from about 0.01 mg Hg/kg for the River Malagarasi delta to 0.07, 0.2, and 1.6 mg/kg, respectively, for the Rwamagasa 'background', moderately and most contaminated sites. For piscivorous (Lates, Brycinus, and Hydrocynus spp.), insectivorous (Barbus spp.), and planktivorous (Haplochromis spp.) fish species, the 10-cm standardized Hg concentrations increase from about 0.006 mg/kg for the River Malagarasi-Lake Tanganyika area to 0.5 and 3.5 mg/kg, respectively, for the Rwamagasa moderately and most contaminated sites. The low concentrations of Hg in fish from the Malagarasi River delta and Lake Tanganyika indicate that Hg contamination from the Rwamagasa area does not have a readily discernible impact on the biota of Lake Tanganyika. Many of the fish samples from Rwamagasa exceed guidelines for human consumption (0.5 mg/kg) as well as the WHO recommended limit for vulnerable groups (0.2 mg/kg). Tissue total Hg (THg) of all fish collected from the River Malagarasi-Lake Tanganyika subarea is well below these guidelines. Potential human exposure through consumption of 300 g/day of rice grown on Hg-contaminated soils is 5.5 microg/week. Consumption of 250 g Nile perch (Lates spp.), 500 g tilapia (Oreochromis spp.), and 250 g of catfish (Clarias spp.) each week would result in an intake of 65 microg Hg/week for people consuming only fish from the Mara and Mwanza regions of Lake Victoria and 116 microg Hg/week for people in the Rwamagasa area consuming tilapia and Nile perch from Lake Victoria and catfish from mining-impacted streams. This is lower than the Provisional Tolerable Weekly Intake (PTWI) of 300 microg for Hg in the diet set by the WHO and the FAO. Inadvertent ingestion of soil containing 9 mg Hg/kg at a rate of 80 mg/day would give an additional estimated weekly intake of 5 microg THg, whereas the persistent and purposeful consumption of soil (geophagia) at a rate of 26 g soil/day would produce an additional chemical exposure of 230 microg Hg/day.


Subject(s)
Environmental Monitoring , Food Contamination/analysis , Mercury/analysis , Mining , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Animals , Crops, Agricultural/chemistry , Fishes/metabolism , Fresh Water/chemistry , Geologic Sediments/chemistry , Gold , Mercury/pharmacokinetics , Soil Pollutants/pharmacokinetics , Tanzania , Water Pollutants, Chemical/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...