Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Physiol Res ; 73(2): 239-251, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710061

ABSTRACT

Oxygen therapy provides an important treatment for preterm and low-birth-weight neonates, however, it has been shown that prolonged exposure to high levels of oxygen (hyperoxia) is one of the factors contributing to the development of bronchopulmonary dysplasia (BPD) by inducing lung injury and airway hyperreactivity. There is no effective therapy against the adverse effects of hyperoxia. Therefore, this study was undertaken to test the hypothesis that natural phytoalexin resveratrol will overcome hyperoxia-induced airway hyperreactivity, oxidative stress, and lung inflammation. Newborn rats were exposed to hyperoxia (fraction of inspired oxygen - FiO2>95 % O2) or ambient air (AA) for seven days. Resveratrol was supplemented either in vivo (30 mg·kg-1·day-1) by intraperitoneal administration or in vitro to the tracheal preparations in an organ bath (100 mikroM). Contractile and relaxant responses were studied in tracheal smooth muscle (TSM) using the in vitro organ bath system. To explain the involvement of nitric oxide in the mechanisms of the protective effect of resveratrol against hyperoxia, a nitric oxide synthase inhibitor - Nomega-nitro-L-arginine methyl ester (L-NAME), was administered in some sets of experiments. The superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and the tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) levels in the lungs were determined. Resveratrol significantly reduced contraction and restored the impaired relaxation of hyperoxia-exposed TSM (p<0.001). L-NAME reduced the inhibitory effect of resveratrol on TSM contractility, as well as its promotion relaxant effect (p<0.01). Resveratrol preserved the SOD and GPx activities and decreased the expression of TNF-alpha and IL-1beta in hyperoxic animals. The findings of this study demonstrate the protective effect of resveratrol against hyperoxia-induced airway hyperreactivity and lung damage and suggest that resveratrol might serve as a therapy to prevent the adverse effects of neonatal hyperoxia. Keywords: Bronchopulmonary dysplasia, Hyperoxia, Airway hyperreactivity, Resveratrol, Pro-inflammatory cytokines.


Subject(s)
Animals, Newborn , Bronchopulmonary Dysplasia , Disease Models, Animal , Oxidative Stress , Pneumonia , Resveratrol , Animals , Resveratrol/pharmacology , Oxidative Stress/drug effects , Bronchopulmonary Dysplasia/prevention & control , Bronchopulmonary Dysplasia/metabolism , Pneumonia/prevention & control , Pneumonia/metabolism , Pneumonia/chemically induced , Rats , Hyperoxia/complications , Hyperoxia/metabolism , Stilbenes/pharmacology , Stilbenes/therapeutic use , Antioxidants/pharmacology , Bronchial Hyperreactivity/prevention & control , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/physiopathology , Bronchial Hyperreactivity/chemically induced , Rats, Sprague-Dawley , Male
2.
Bull Exp Biol Med ; 176(3): 359-362, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38342810

ABSTRACT

Ion channels activity is regulated through soluble guanylate cyclase (sGC) and adenylate cyclase (AC) pathways, while phosphodiesterases (PDE) control the intracellular levels of cAMP and cGMP. Here we applied RNA transcriptome sequencing to study changes in the gene expression of the sGC, AC, and PDE isoforms in isolated rat ventricular cardiomyocytes under conditions of microgravity and hypergravity. Our results demonstrate that microgravity reduces the expression of sGC isoform genes, while hypergravity increases their expression. For a subset of AC isoforms, gene expression either increased or decreased under both microgravity and hypergravity conditions. The expression of genes encoding 10 PDE isoforms decreased under microgravity, but increased under hypergravity. However, under both microgravity and hypergravity, the gene expression increased for 7 PDE isoforms and decreased for 3 PDE isoforms. Overall, our findings indicate specific gravity-dependent changes in the expression of genes of isoforms associated with the studied enzymes.


Subject(s)
Hypergravity , Weightlessness , Rats , Animals , Phosphoric Diester Hydrolases/metabolism , Soluble Guanylyl Cyclase , Adenylyl Cyclases/genetics , Myocytes, Cardiac/metabolism , Protein Isoforms/genetics , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Cyclic GMP/metabolism
3.
Dokl Biochem Biophys ; 512(1): 251-255, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38093125

ABSTRACT

The mechanoelectrical feedback in the heart is based on the work of mechanically gated (MGCs) and mechanosensitive (MSCs) channels. Since microgravity alters the heart's morphological and physiological properties, we hypothesized that the expression of both MGCs and MSCs would be affected. We employed RNA transcriptome sequencing to investigate changes in the gene transcript levels of MGCs and MSCs in isolated rat ventricular cardiomyocytes under control conditions and in a simulated microgravity environment. For the first time, our findings demonstrated that simulated microgravity induces alterations in the gene transcript levels of specific MGCs, such as TRPM7, TRPV2, TRPP1, TRPP2, Piezo1, TMEM63A, TMEM36B, and known MSCs, including K2P2.1, K2P3.1, Kir6.1, Kir6.2, NaV1.5, CaV1.2, KV7.1. However, other voltage-gated channels and channels lacking a voltage sensor remained unaffected. These findings suggest that the altered expression of MGCs and MSCs could lead to changes in the net currents across the membrane, ultimately impacting the heart's function.


Subject(s)
Myocytes, Cardiac , Weightlessness , Rats , Animals , Ion Channels/genetics , Ion Channels/metabolism
4.
Bull Exp Biol Med ; 175(6): 730-733, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37979024

ABSTRACT

Since hypergravity changes the morphological and physiological properties of the heart, it was assumed that the expression of ion channels that respond to cell stretching or compressing, mechanically gated channels (MGC) and mechanosensitive channels (MSC), would be affected. Using RNA transcriptome sequencing, the change in the number of transcripts for MGC and MSC genes was studied in isolated rat ventricular cardiomyocytes under 4g hypergravity for 5 days. It was shown for the first time that hypergravity induces changes in the number of transcripts of MGC genes: an increase for TRPC1, TRPC3, TRPM7, TRPP1 (PKD1), TRPP2 (PKD2), TMEM63A, TMEM63B, but a decrease for TRPV2, Piezo1, Piezo2. The number of MSC gene transcripts increases: TREK-1, Kir6.2, Nav1.5, Cav1.2, Cav1.3, Kv7.1, and Kv1.2. This potentially leads to an increase in the expression of MGC and MSC proteins leading to an increase in the net current and, as a result, pathological changes in the heart function.


Subject(s)
Hypergravity , Myocytes, Cardiac , Rats , Animals , RNA , Base Sequence
5.
Physiol Res ; 70(4): 489-499, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34062074

ABSTRACT

The use of oxygen therapy (high doses of oxygen - hyperoxia) in the treatment of premature infants results in their survival. However, it also results in a high incidence of chronic lung disease known as bronchopulmonary dysplasia, a disease in which airway hyper-responsiveness and pulmonary hypertension are well known as consequences. In our previous studies, we have shown that hyperoxia causes airway hyper-reactivity, characterized by an increased constrictive and impaired airway smooth muscle relaxation due to a reduced release of relaxant molecules such as nitric oxide, measured under in vivo and in vitro conditions (extra- and intrapulmonary) airways. In addition, the relaxation pathway of the vasoactive intestinal peptide (VIP) and/or pituitary adenylate cyclase activating peptide (PACAP) is another part of this system that plays an important role in the airway caliber. Peptide, which activates VIP cyclase and pituitary adenylate cyclase, has prolonged airway smooth muscle activity. It has long been known that VIP inhibits airway smooth muscle cell proliferation in a mouse model of asthma, but there is no data about its role in the regulation of airway and tracheal smooth muscle contractility during hyperoxic exposure of preterm newborns.


Subject(s)
Bronchopulmonary Dysplasia/etiology , Hyperoxia/etiology , Infant, Premature , Lung/metabolism , Muscle, Smooth/metabolism , Oxygen Inhalation Therapy/adverse effects , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Premature Birth , Vasoactive Intestinal Peptide/metabolism , Airway Remodeling , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/physiopathology , Disease Models, Animal , Gestational Age , Humans , Hyperoxia/metabolism , Hyperoxia/physiopathology , Infant, Newborn , Lung/physiopathology , Muscle, Smooth/physiopathology , Signal Transduction
6.
Neurol Res ; 43(7): 553-561, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33637026

ABSTRACT

BACKGROUND AND AIMS: Ischemic stroke (IS) is one of the leading causes of death and long-term disability in Bulgaria. IS affects different aspects of the patient's life and results in loss of independence and poor health-related quality of life (HR-QoL). We aimed to analyze the impact of IS on HR-QoL and to identify possible associations with sociodemographic, clinical features, and vascular risk factors (RF). METHODS: A prospective, hospital-based study was undertaken from 1 July 2019 to 31 June 2020, at a tertiary care referral center for neurological disorders in Bulgaria. A total of 150 patients with acute IS - 50 with thrombolytic and 100 with non-thrombolytic therapy - were included. Thorough clinical and sociodemographic data were collected. The NIHSS scale determined stroke severity, and HR-QoL was assessed with the Stroke Impact Scale Version 3.0 (SIS 3.0) during the first 3 months. RESULTS: The overall HR-QoL improved during the observation period, but still, it remained significantly worse. The major predictors of a marked reduction in HR-QoL were age, female sex, lower education level, and actively working at stroke onset, high NIHSS score, anterior circulation stroke, and more extended hospital. Atrial fibrillation and heart failure were significantly associated with poor HR-QoL. The other investigated vascular risk factors were associated with different extends with poorer HR-QoL, except for dyslipidemia. CONCLUSION: Stroke survivors have significantly reduced HR-QoL. Multiple interacting factors are associated with an unfavorable outcome after IS. Early detection of these factors would help to improve the care for IS patients, to reduce disabilities and improve HR-QoL.


Subject(s)
Atrial Fibrillation/complications , Brain Ischemia/complications , Ischemic Stroke/complications , Quality of Life , Aged , Aged, 80 and over , Female , Fibrinolytic Agents/pharmacology , Humans , Male , Middle Aged , Risk Factors , Surveys and Questionnaires , Survivors
7.
J Pharmacol Sci ; 141(1): 25-31, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31533896

ABSTRACT

This study was devoted to elucidating the interferon (IFN)-γ-induced signaling pathway and the interaction between protein kinase G (PKG) and protein kinase A (PKA) through large-conductance Ca(2+)-activated K(+) channels in human cardiac fibroblasts. The IK currents were recorded using a whole-cell patch clamp method. A large depolarization (+50 mV) and a high Ca2+ concentration (pCa 6.0) were used in the internal pipette solution to activate only the KCa channels. Iberiotoxin (Ibtx), which selectively inhibits BKCa channels at a concentration of 100 nmol/l, caused a significant reduction of basal IK. Adding IFN-γ in the presence of Ibtx had no effect on IK. Application of the IFN-γ caused a significant reduction in total K+ current amplitude, recorded with a 500 ms depolarizing pulse duration, to +50 mV from a holding potential of -80 mV. We tested the involvement of the sGC/cGMP/PKG signaling pathway by using specific PKG inhibitor KT 5823, potent sGC inhibitor NS 2028, and specific sGC agonist BAY 41-8543. The obtained data confirmed that only sGC participated in the IFN-γ-mediated BKCa channel modulation, which was mediated further by PKA. This study represents first evidence about the participation of the IFN-γ in the mechanisms responsible for BKCa modulation in HCFs. We also believe that this process occurs via negative crosstalk between the PKG- and PKA-associated pathways.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/physiology , Fibroblasts/metabolism , Interferon-gamma/pharmacology , Myocardium/cytology , Potassium Channels, Calcium-Activated/metabolism , Protein Kinase C/physiology , Signal Transduction/physiology , Cells, Cultured , Humans
8.
Physiol Res ; 67(2): 175-179, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29303598

ABSTRACT

This review is focused on the unusual composition of the endolymph of the inner ear and its function in mechanoelectrical transduction. The role of K(+) and Ca(2+) in excitatory influx, the very low Na(+), Ca(2+) and Mg(2+) concentrations of endolymph, stereocilia structure of hair cells and some proteins involved in mechanosensory signal transduction with emphasis on auditory receptors are presented and analyzed in more details. An alternative hypothetical model of ciliary structure and endolymph with a 'normal' composition is discussed. It is concluded that the unique endolymph cation content is more than an energy saving mechanism that avoids disturbing circulatory vibrations to achieve a much better mechanosensory resolution. It is the only possible way to fulfil the requirements for a precise ciliary mechanoelectrical transduction in conditions where pressure events with quite diverse amplitudes and duration are transformed into adequate hair cell membrane depolarizations, which are regulated by a sensitive Ca(2+)-dependent feedback tuning.


Subject(s)
Ear, Inner/physiology , Endolymph/physiology , Animals , Ear, Inner/chemistry , Endolymph/chemistry , Hair Cells, Auditory, Inner/chemistry , Hair Cells, Auditory, Inner/physiology , Humans , Mechanotransduction, Cellular
9.
Bull Exp Biol Med ; 163(6): 705-709, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29063314

ABSTRACT

Depolarization of cardiomyocytes triggered by stretch and activation of mechanically gated ion channels can lead to serious arrhythmias. However, stretch-induced signaling activating these channels remain little studied. This study tested the hypothesis on implication of NO in shaping the electrical abnormalities provoked by stretch of the right atrial myocardium in rat via a mechanism engaging a signaling cascade, where NO plays a significant role. This approach showed that in isolated right atrial preparation, NO donor SNAP induces the electrical abnormalities similar to those provoked by stretch, and the latter results from activation of NO synthase.


Subject(s)
Action Potentials/drug effects , Atrial Function/drug effects , Heart Atria/drug effects , Myocytes, Cardiac/drug effects , Nitric Oxide Donors/pharmacology , S-Nitroso-N-Acetylpenicillamine/pharmacology , Action Potentials/physiology , Animals , Biomechanical Phenomena , Female , Gadolinium/pharmacology , Ion Channels/antagonists & inhibitors , Ion Channels/metabolism , Myocytes, Cardiac/physiology , Nitric Oxide Synthase/metabolism , Rats , Rats, Wistar , Signal Transduction , Sinoatrial Node/drug effects , Sinoatrial Node/physiology , Tissue Culture Techniques
10.
Bull Exp Biol Med ; 163(5): 583-585, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28948553

ABSTRACT

Discrete mechanical stretch of isolated spontaneously contracting cardiac myocytes was employed to examine the kinetics of NO production in these cells. NO oscillations were detected with fluorescent dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. The mechanisms underlying stretch-induced changes in NO concentration remain unclear and further studies are needed to evaluate the role of NO oscillation in the regulation of cardiomyocyte function.


Subject(s)
Myocytes, Cardiac/metabolism , Nitric Oxide/metabolism , Animals , Cells, Cultured , Fluoresceins/pharmacology , Kinetics , Myocytes, Cardiac/drug effects , Rats , Stress, Mechanical
11.
Immunol Invest ; 46(1): 22-37, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27617892

ABSTRACT

The role of cytokines as regulators of stretch-related mechanisms is of special importance since mechano-sensitivity plays an important role in a wide variety of biological processes. Here, we elucidate the influence of cytokine application on mechano-sensitivity and mechano-transduction. The atrial myocardial stretch induces production of interleukin (IL)-2, IL-6, IL-13, IL-17A, and IL-18 with exception of tumor necrosis factor α (TNF-α), IL-1ß, and vascular endothelial growth factor B (VEGF-B). Positive ionotropic effect was specific for VEGF-B, negative ionotropic effects were specific for TNF-α, IL-1ß, IL-2, IL-6, IL-13, IL-17A and IL-18, while IL-1α doesn't show direct ionotropic effect. The IL-2, IL-6, IL-17A, IL-18, and VEGF-B cause elongation of the APD, in comparison with the reduced APD caused by the IL-13. The TNF-α, IL-1ß, and IL-18 influences L-type Ca2+ channels, IL-2 has an inhibitory effect on the fast Na+ channels while IL-17A and VEGF-B were specific for Kir channels. With exception of the IL-1α, IL-2, and VEGF-B, all analyzed cytokines include nitric oxide dependent signaling with resultant combined effects on mechano-gated and Ca2+ channels. The relationships between these pathways and the time-dependence of their activation are of important considerations in the evaluation of cytokine-induced electrical abnormality, specific for cardiac dysfunctions. In general, the discussion presented in this review covers research devoted to counterbalance between different cytokines in the regulation of stretch-induced effects in rat atrial myocardium. ABBREVIATIONS: APs: action potentials; APD25: action potential durations to 25% of re-polarization; APD50: action potential durations to 50% of repolarization; APD90: action potential durations to 90% of repolarization; MGCs: mechanically gated channels.


Subject(s)
Cytokines/immunology , Cytokines/metabolism , Heart Atria/pathology , Mechanotransduction, Cellular/immunology , Myocardial Contraction , Myocardium/metabolism , Vascular Endothelial Growth Factor A/metabolism , Action Potentials/immunology , Animals , Atrial Function/immunology , Electric Conductivity , Electricity , Humans , Myocardium/immunology , Rats , Signal Transduction
12.
Cell Immunol ; 310: 178-183, 2016 12.
Article in English | MEDLINE | ID: mdl-27633331

ABSTRACT

In this study, we were focused on the differences between certain circulating cytokine levels in patients with or without sinus arrhythmia, according to the median IL-6 level. All patients were stable with regards to symptoms and therapy for at least one month prior to the measurements conducted within this study.Exclusion criteria were: patients with sleep apnea, asthma, respiratory insufficiency of any genesis, active infection, allergy, inflammatory diseases, cancer, diabetes of any type and treatment with anti-inflammatory drugs. The study was approved by the Institutional Review Board. All recruited patients gave their verbal and written consent for participation in the study. The study group consisted of 74 patients divided into two groups: with (38) and without sinus arrhythmia but with diagnosed coronary artery disease (36). Sinus arrhythmia was confirmed by 24h Holter monitoring. From all test parameters only cytokines IL-2, IL-8, IL-10, IL-17 and IL-18, showed statistically significant increasing in patients with statistically higher IL-6 levels. It is possible that IL-6 may not be a marker for the selection of patients with sinus arrhythmia or coronary artery disease. The findings indicate that IL-6 represents a reliable indicator for increased expression of IL-2, IL-8, IL-10, IL-17 and IL-18 in patients with sinus arrhythmia or coronary artery disease. Further studies in a large number of patients would be necessary to confirm our observations.


Subject(s)
Arrhythmia, Sinus/diagnosis , Biomarkers/blood , Coronary Artery Disease/diagnosis , Interleukin-6/blood , Adult , Aged , Cytokines/metabolism , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Prospective Studies
13.
Physiol Res ; 65(5): 799-807, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27429118

ABSTRACT

This study aims to reveal the reason for the increased force of 5-hydroxytryptamine-induced contraction of endothelium-denuded skeletal muscle arteries of diabetic rats in the presence of perivascular adipose tissue (PVAT). Our data on rat gracilis arteries show that i) PVAT of skeletal muscle arteries of healthy and diabetic rats releases hydrogen peroxide (H(2)O(2)), ii) higher concentrations of 5-hydroxytryptamine increase the production of H(2)O(2) in PVAT; iii) an enhanced PVAT production of H(2)O(2) is the main, if not the only, reason for the sensitization of arterial contraction to 5-hydroxytriptamine-induced contraction in diabetes and iv) endothelium antagonizes the effect of PVAT-derived H(2)O(2).


Subject(s)
Adipose Tissue/metabolism , Arteries/physiopathology , Diabetes Mellitus, Experimental/physiopathology , Hydrogen Peroxide/metabolism , Vasoconstriction , Animals , Diabetes Mellitus, Experimental/metabolism , Male , Muscle, Skeletal/blood supply , Rats, Wistar , Serotonin
14.
Int Immunopharmacol ; 28(1): 780-4, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26283592

ABSTRACT

Using a micro-electrode technique we studied the effects of interleukin 1α and interleukin 1ß on bio-electric activity of rat atrial myocardium under normal conditions and after gradual stretching. Perfusion with interleukin 1α increased the duration of the action potential at the level of 90% re-polarization. Stretch induced tachy-arrhythmia in the presence of interleukin 1α is mainly regulated via stretch increased nitric oxide production, while the ionotropic effect of the interleukin-1α during stretching is not pronounced. The perfusion with interleukin 1ß did not change the values of the duration of the action potentials at the levels of 25, 50 and 90% repolarization. The interleukin lß caused an appearance of extra-systolic patterns which turned into normal rhythm, alternating with periods of normal activity. The total intracellular nitric oxide level induced by both interleukin 1ß and stretching is balanced by interleukin-1ß induced cation influx.


Subject(s)
Atrial Function, Right/drug effects , Heart Atria/drug effects , Interleukin-1alpha/pharmacology , Interleukin-1beta/pharmacology , Membrane Potentials/drug effects , Animals , Atrial Function, Right/immunology , Biomechanical Phenomena/drug effects , Biomechanical Phenomena/immunology , Data Interpretation, Statistical , Heart Atria/immunology , Heart Atria/physiopathology , In Vitro Techniques , Interleukin-1alpha/immunology , Interleukin-1beta/immunology , Male , Membrane Potentials/immunology , Rats, Wistar
15.
Cytokine ; 76(2): 561-565, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26153393

ABSTRACT

Using microelectrode technique we studied the effects of interleukin-17A on the activity of rat atrial myocardium under normal conditions and after gradual stretching of the tissue. Perfusion with interleukin-17A for 35 min without stretch, led to an increase in APD25, APD50 and APD90. The effect on the frequency and force of the contraction was absent. Stretching during interleukin-17A perfusion led to an increase only at the level of APD90. In the same condition, the repetition frequency of the action potentials did not change as well. Close observation of the cytokine induced mechanisms, confirmed that IL-17A act on different levels and induce different signaling pathways involved in the regulation of cardiac function.


Subject(s)
Heart/physiology , Interleukin-17/physiology , Action Potentials , Animals , Male , Rats , Rats, Wistar
16.
Immunol Lett ; 167(1): 23-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26112420

ABSTRACT

Using micro-electrode technique we studied the effects of interleukin-2 (50 ng/ml) on bio-electric activity of rat atrial myocardium under normal conditions and after gradual stretching of the tissue. It was shown that interleukin-2 caused increasing in the duration of action potential at the levels of 25, 50, and 90% re-polarization. Perfusion with interleukin-2 resulted in appearance of frequent rhythm patterns followed by smooth transient fragments of paroxysmal tachyarrhythmia pacing into normal rhythms. In the presence of interleukin-2, stretching of the tissue by 1.7 mN led to appearance of abnormal bio-electrical activity, predominantly in the lengthening of the duration of action potential at the levels of 90% re-polarization. Close observation of both interleukin-2 induced action potential duration to 90% of re-polarization, hump-like depolarization and stretch induced hump-like alteration, indicate existence of a link between the interleukin-2 and stretch induced mechanisms.


Subject(s)
Atrial Function/drug effects , Atrial Function/physiology , Interleukin-2/pharmacology , Myocardium/metabolism , Action Potentials/drug effects , Animals , Electrophysiological Phenomena/drug effects , Male , Muscle Contraction , Myocytes, Cardiac/drug effects , Rats , Tachycardia
17.
Physiol Res ; 64(6): 891-6, 2015.
Article in English | MEDLINE | ID: mdl-26047376

ABSTRACT

The aim of this study was to gain more complete information about the relationships between some endogenous antioxidants and the malondialdehyde (MDA) as a marker of lipid peroxidation, during D-galactose induced senescence. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and the concentrations of uric acid (UA) in plasma and MDA in erythrocyte's hemolysate, were determined in 15 D-galactose (D-gal), treated rats and compared with 15 placebo. The activity of the erythrocyte's CAT was found significantly increased due to the senescence. The ratio of the activities of antioxidant enzymes R=SOD/(GPx+CAT) was significantly decreased due to the senescence and negatively correlated with the MDA (rho=-0.524, p=0.045). The antioxidant enzymes SOD and GPx negatively correlated with the MDA, while CAT displayed no correlation. Further, the UA positively correlated with the ratio of activities of the antioxidant enzymes R=SOD/(GPx+CAT), (rho=0.564, p=0.029 for senescent rats). Obtained results may contribute to better understanding of the process of D-gal induced senescence in the erythrocytes.


Subject(s)
Antioxidants/metabolism , Cellular Senescence , Erythrocytes/enzymology , Lipid Peroxidation , Animals , Biomarkers/metabolism , Catalase/metabolism , Galactose , Glutathione Peroxidase/metabolism , Male , Malondialdehyde/metabolism , Rats, Wistar , Superoxide Dismutase/metabolism , Uric Acid/metabolism
18.
Immunobiology ; 220(9): 1107-12, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26009487

ABSTRACT

Using the micro-electrode technique we studied the effects of interleukin-6 on bio-electric activity of rat atrial tissue under normal conditions and after gradual stretching. It was shown that IL-6 caused increasing of the duration of the action potential at the levels of 25, 50, and 90% re-polarization. The hump-like depolarization at APD90 appeared 7-10 min after initial stretching and transformed into single extra-potentials after tension removing. Perfusion with IL-6 for more than 20 min led to the appearance of atrial fibrillation even with the application of slight tension. Close observation of the IL-6 induced mechanisms and stretch induced APD alteration, confirmed the existence of a tight link between examined cytokine and stretch induced mechanisms.


Subject(s)
Action Potentials/physiology , Atrial Function/drug effects , Heart Atria/drug effects , Interleukin-6/pharmacology , Animals , Atrial Fibrillation/physiopathology , Electric Conductivity , Gadolinium/pharmacology , Male , Microelectrodes , Myocardial Contraction/physiology , Perfusion , Rats , Rats, Wistar
19.
J Integr Neurosci ; 14(1): 19-30, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25597276

ABSTRACT

Decreased conducting processes leading usually to conduction block and increased weakness of limbs during cold (cold paresis) or warmth (heat paresis) have been reported in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). To explore the mechanisms of these symptoms, the effects of temperature (from 20°C to 42°C) on nodal action potentials and their current kinetics in previously simulated case of 70% CIDP are investigated, using our temperature dependent multi-layered model of the myelinated human motor nerve fiber. The results show that potential amplitudes have a bifid form at 20°C. As in the normal case, for the CIDP case, the nodal action potentials are determined mainly by the nodal sodium currents (I Na ) for the temperature range of 20-39°C, as the contribution of nodal fast and slow potassium currents (I Kf and I Ks ) to the total ionic current (Ii) is negligible. Also, the contribution of I Kf and I Ks to the membrane repolarization is enhanced at temperatures higher than 39°C. However, in the temperature range of 20-42°C, all potential parameters in the CIDP case, except for the conduction block during hyperthermia (≥ 40°C) which is again at 45°C, worsen: (i) conduction velocities and potential amplitudes are decreased; (ii) afterpotentials and threshold stimulus currents for the potential generation are increased; (iii) the current kinetics of action potentials is slowed and (iv) the conduction block during hypothermia (≤ 25°C) is at temperatures lower than 20°C. These potential parameters are more altered during hyperthermia and are most altered during hypothermia. The present results suggest that the conducting processes in patients with CIDP are in higher risk during hypothermia than hyperthermia.


Subject(s)
Membrane Potentials/physiology , Models, Neurological , Nerve Fibers/physiology , Neural Conduction/physiology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/pathology , Temperature , Biophysics , Computer Simulation , Humans , Kinetics
20.
Physiol Res ; 64(1): 61-70, 2015.
Article in English | MEDLINE | ID: mdl-25194135

ABSTRACT

Considering the preexisting influence of the process of natural aging on antioxidant enzymes activity and the level of lipid peroxidation, the age of the rats at which D-galactose (D-gal) treatment is started could strongly impact the development of D-gal induced senescence. To evaluate this, we subjected 1, 3 and 15 months old rats to D-gal treatment in parallel with having appropriate placebos (0.9 % saline). Our results showed elevated glutathione peroxidase (GPx) activity and no significant changes in superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) activity or malondialdehyde (MDA) levels in relation to natural aging. In mature and aged senescent livers we observed positive correlation between increased ratio R=SOD/(GPx+CAT) and increased MDA concentration. MDA levels seemed to correlate positively with the age of the animals at which D-gal treatment had started. In the case of 3 and 15 months old rats there was D-gal induced decrease in SOD and GR activity, but this effect of the treatment was not observed in 1 month old rats. Our results imply that the changes in the antioxidant enzyme activities are not only under the influence of the D-gal overload, but also depend on the developmental stage of the rats. According to our results, with regard to enzymatic antioxidant capacity and the level of lipid peroxidation, the best age for induction of senescence is somewhere after the third month.


Subject(s)
Aging/metabolism , Antioxidants/metabolism , Enzymes/metabolism , Galactose/pharmacology , Kidney/drug effects , Liver/drug effects , Age Factors , Animals , Biomarkers/metabolism , Catalase/metabolism , Cellular Senescence/drug effects , Female , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Kidney/enzymology , Lipid Peroxidation/drug effects , Liver/enzymology , Male , Malondialdehyde/metabolism , Rats, Wistar , Sex Factors , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...