Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38131969

ABSTRACT

For the development and optimization of solid-state symmetrical supercapacitors, herein, we propose using carbon-based electrodes and sodium- and lithium-form Aquivion electrolyte membranes, which serve as the separator and electrolyte. Carbon xerogels, synthesized using microwave-assisted sol-gel methodology, with designed and controlled properties were obtained as electrode materials. Commercial activated carbon (YP-50F, "Kuraray Europe" GmbH) was used as the active material for comparison. Notably, the developed solid-state symmetrical supercapacitors provide sufficiently high specific capacitances of 105-110 F g-1 at 0.2 A g-1, along with an energy density of 4.5 Wh kg-1 at 300 W kg-1, and a voltage window of 0-1.2 V in aqueous environments, also demonstrating an excellent cycling stability for up to 10,000 charge/discharge cycles. These results can demonstrate the potential applications of carbon xerogel as the active electrode material and cation exchange membrane as the electrolyte in the development of solid-state supercapacitor devices.

2.
Nanomaterials (Basel) ; 13(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299684

ABSTRACT

Yttrium-doped barium cerate (BCY15) was used as ceramic matrix to obtain Ni/BCY15 anode cermet for application in proton-conducting solid oxide fuel cells (pSOFC). Ni/BCY15 cermets were prepared in two different types of medium, namely deionized water (W) and anhydrous ethylene glycol (EG) using wet chemical synthesis by hydrazine. An in-depth analysis of anodic nickel catalyst was made aiming to elucidate the effect of anode tablets' preparation by high temperature treatment on the resistance of metallic Ni in Ni/BCY15-W and Ni/BCY15-EG anode catalysts. On purpose reoxidation upon high-temperature treatment (1100 °C for 1 h) in air ambience was accomplished. Detailed characterization of reoxidized Ni/BCY15-W-1100 and Ni/BCY15-EG-1100 anode catalysts by means of surface and bulk analysis was performed. XPS, HRTEM, TPR, and impedance spectroscopy measurements experimentally confirmed the presence of residual metallic Ni in the anode catalyst prepared in ethylene glycol medium. These findings were evidence of strong metal Ni network resistance to oxidation in anodic Ni/BCY15-EG. Enhanced resistance of the metal Ni phase contributed to a new microstructure of the Ni/BCY15-EG-1100 anode cermet getting more stable to changes that cause degradation during operation.

3.
Nanomaterials (Basel) ; 11(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34947572

ABSTRACT

Yttrium-doped barium cerate (BCY15) was used as an anode ceramic matrix for synthesis of the Ni-based cermet anode with application in proton-conducting solid oxide fuel cells (pSOFC). The hydrazine wet-chemical synthesis was developed as an alternative low-cost energy-efficient route that promotes 'in situ' introduction of metallic Ni particles in the BCY15 matrix. The focus of this study is a detailed comparative characterization of the nickel state in the Ni/BCY15 cermets obtained in two types of medium, aqueous and anhydrous ethylene glycol environment, performed by a combination of XRD, N2 physisorption, SEM, EPR, XPS, and electrochemical impedance spectroscopy. Obtained results on the effect of the working medium show that ethylene glycol ensures active Ni cermet preparation with well-dispersed nanoscale metal Ni particles and provides a strong interaction between hydrazine-originating metallic Ni and cerium from the BCY15 matrix. The metallic Ni phase in the pSOFC anode is more stable during reoxidation compared to the Ni cermet prepared by the commercial mechanical mixing procedure. These factors contribute toward improvement of the anode's electrochemical performance in pSOFC, enhanced stability, and a lower degradation rate during operation.

4.
Acta Chim Slov ; 61(2): 255-62, 2014.
Article in English | MEDLINE | ID: mdl-25125108

ABSTRACT

Permittivity Spectroscopy is a branch of the Impedance Spectroscopy specially tuned for measurements and analyses of dielectrics permittivity properties. The present paper presents experimental results on permittivity properties of composite objects in which a polarizable dielectric is distributed in a fine non-polarizable matrix (solid or liquid) measured in frequency range 1 MHz down to 0.01 Hz. Two types of objects are studied - water in porous functional ceramics and lubricating oils. In both systems gigantic enhancement of the effective capacitance is observed. The first series of experiments was performed on porous membranes of yttrium doped barium cerate, which is a proton conducting ceramics with hydrophilic properties. At a given level of watering the measured capacitance is sharply increasing (3 to 5 orders of magnitude) in the lower frequency range. The second example covers permittivity study of lubricating oils, where the increase is 2-3 orders of magnitude. The phenomenon of gigantic enhancement of the effective capacitance could be related to a formation of dipole volume structures induced by the external alternating electrical field.

SELECTION OF CITATIONS
SEARCH DETAIL
...