Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacogenomics J ; 22(1): 9-18, 2022 02.
Article in English | MEDLINE | ID: mdl-34711928

ABSTRACT

Acute Graft versus Host Disease (aGvHD) grades 2-4 occurs in 15-60% of pediatric patients undergoing allogeneic haematopoietic stem-cell transplantation (allo-HSCT). The collateral damage to normal tissue by conditioning regimens administered prior to allo-HSCT serve as an initial trigger for aGvHD. DNA-repair mechanisms may play an important role in mitigating this initial damage, and so the variants in corresponding DNA-repair protein-coding genes via affecting their quantity and/or function. We explored 51 variants within 17 DNA-repair genes for their association with aGvHD grades 2-4 in 60 pediatric patients. The cumulative incidence of aGvHD 2-4 was 12% (n = 7) in the exploratory cohort. MGMT rs10764881 (G>A) and EXO rs9350 (c.2270C>T) variants were associated with aGvHD 2-4 [Odds ratios = 14.8 (0 events out of 40 in rs10764881 GG group) and 11.5 (95% CI: 2.3-191.8), respectively, multiple testing corrected p ≤ 0.001]. Upon evaluation in an extended cohort (n = 182) with an incidence of aGvHD 2-4 of 22% (n = 40), only MGMT rs10764881 (G>A) remained significant (adjusted HR = 2.05 [95% CI: 1.06-3.94]; p = 0.03) in the presence of other clinical risk factors. Higher MGMT expression was seen in GG carriers for rs10764881 and was associated with higher IC50 of Busulfan in lymphoblastoid cells. MGMT rs10764881 carrier status could predict aGvHD occurrence in pediatric patients undergoing allo-HSCT.


Subject(s)
DNA Repair/genetics , Genetic Variation , Graft vs Host Disease/genetics , Hematopoietic Stem Cell Transplantation/methods , Adolescent , Antineoplastic Agents, Alkylating/pharmacokinetics , Busulfan/pharmacokinetics , Child , Child, Preschool , Cohort Studies , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Female , Genetic Testing , Hematopoietic Stem Cell Transplantation/adverse effects , Heterozygote , Humans , Incidence , Male , Predictive Value of Tests , Retrospective Studies , Risk Factors , Tumor Suppressor Proteins/genetics
2.
Toxicol In Vitro ; 29(5): 1060-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25912373

ABSTRACT

The bisphenols AF (BPAF) and S (BPS) are structural analogs of the endocrine disruptor bisphenol A (BPA), and are used in common products as a replacement for BPA. To elucidate genome-wide gene expression responses, estrogen-dependent osteosarcoma cells were cultured with 10 nM BPA, BPAF, or BPS, for 8 h and 3 months. Genome-wide gene expression was analyzed using the Illumina Expression BeadChip. Three months exposure had significant effects on gene expression, particularly for BPS, followed by BPAF and BPA, according to the number of differentially expressed genes (1980, 778, 60, respectively), the magnitude of changes in gene expression, and the number of enriched biological processes (800, 415, 33, respectively) and pathways (77, 52, 6, respectively). 'Embryonic skeletal system development' was the most enriched bone-related process, which was affected only by BPAF and BPS. Interestingly, all three bisphenols showed highest down-regulation of genes related to the cardiovascular system (e.g., NPPB, NPR3, TXNIP). BPA only and BPA/BPAF/BPS also affected genes related to the immune system and fetal development, respectively. For BPAF and BPS, the 'isoprenoid biosynthetic process' was enriched (up-regulated genes: HMGCS1, PDSS1, ACAT2, RCE1, DHDDS). Compared to BPA, BPAF and BPS had more effects on gene expression after long-term exposure. These findings stress the need for careful toxicological characterization of BPA analogs in the future.


Subject(s)
Benzhydryl Compounds/toxicity , Osteosarcoma/genetics , Phenols/toxicity , Sulfones/toxicity , Cell Line, Tumor , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...