Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
iScience ; 25(11): 105439, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36388968

ABSTRACT

During meiosis, programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination. DMC1, a conserved recombinase, plays a central role in this process. DMC1 promotes DNA strand exchange between homologous chromosomes, thus creating the physical linkage between them. Its function is regulated not only by several accessory proteins but also by bivalent ions. Here, we show that whereas calcium ions in the presence of ATP cause a conformational change within DMC1, stimulating its DNA binding and D-loop formation, they inhibit the extension of the invading strand within the D-loop. Based on structural studies, we have generated mutants of two highly conserved amino acids - E162 and D317 - in human DMC1, which are deficient in calcium regulation. In vivo studies of their yeast homologues further showed that they exhibit severe defects in meiosis, thus emphasizing the importance of calcium ions in the regulation of DMC1 function and meiotic recombination.

2.
ACS Biomater Sci Eng ; 8(11): 4789-4806, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36202388

ABSTRACT

Many dynamic interactions within the cell microenvironment modulate cell behavior and cell fate. However, the pathways and mechanisms behind cell-cell or cell-extracellular matrix interactions remain understudied, as they occur at a nanoscale level. Recent progress in nanotechnology allows for mimicking of the microenvironment at nanoscale in vitro; electron-beam lithography (EBL) is currently the most promising technique. Although this nanopatterning technique can generate nanostructures of good quality and resolution, it has resulted, thus far, in the production of only simple shapes (e.g., rectangles) over a relatively small area (100 × 100 µm), leaving its potential in biological applications unfulfilled. Here, we used EBL for cell-interaction studies by coating cell-culture-relevant material with electron-conductive indium tin oxide, which formed nanopatterns of complex nanohexagonal structures over a large area (500 × 500 µm). We confirmed the potential of EBL for use in cell-interaction studies by analyzing specific cell responses toward differentially distributed nanohexagons spaced at 1000, 500, and 250 nm. We found that our optimized technique of EBL with HaloTags enabled the investigation of broad changes to a cell-culture-relevant surface and can provide an understanding of cellular signaling mechanisms at a single-molecule level.


Subject(s)
Nanostructures , Nanotechnology , Nanotechnology/methods , Nanostructures/chemistry , Extracellular Matrix , Cell Culture Techniques , Cell Differentiation
3.
Cell Rep ; 33(12): 108543, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33357432

ABSTRACT

DNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiquitination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for HR. The RAD51 K133A mutation increased spontaneous mutations and stress-induced RF stalls and nascent strand degradation. Here, we report in RAD51K133A cells that this phenotype is reduced by expressing a TREX2 H188A mutation that deletes its exonuclease activity. In RAD51K133A cells, knocking out RAD18 or overexpressing PCNA reduces spontaneous mutations, while expressing ubiquitination-incompetent PCNAK164R increases mutations, indicating DDT as causal. Deleting TREX2 in cells deficient for the RF maintenance proteins poly(ADP-ribose) polymerase 1 (PARP1) or FANCB increased nascent strand degradation that was rescued by TREX2H188A, implying that TREX2 prohibits degradation independent of catalytic activity. A possible explanation for this occurrence is that TREX2H188A associates with UBC13 and ubiquitinates PCNA, suggesting a dual role for TREX2 in RF maintenance.


Subject(s)
DNA Replication , Exodeoxyribonucleases/metabolism , Mutation , Phosphoproteins/metabolism , Rad51 Recombinase/metabolism , Animals , Exodeoxyribonucleases/genetics , Humans , Male , Mice , Phosphoproteins/genetics , Rad51 Recombinase/biosynthesis , Rad51 Recombinase/genetics , Transfection
4.
Nucleic Acids Res ; 48(2): 694-708, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31799622

ABSTRACT

The proper repair of deleterious DNA lesions such as double strand breaks prevents genomic instability and carcinogenesis. In yeast, the Rad52 protein mediates DSB repair via homologous recombination. In mammalian cells, despite the presence of the RAD52 protein, the tumour suppressor protein BRCA2 acts as the predominant mediator during homologous recombination. For decades, it has been believed that the RAD52 protein played only a back-up role in the repair of DSBs performing an error-prone single strand annealing (SSA). Recent studies have identified several new functions of the RAD52 protein and have drawn attention to its important role in genome maintenance. Here, we show that RAD52 activities are enhanced by interacting with a small and highly acidic protein called DSS1. Binding of DSS1 to RAD52 changes the RAD52 oligomeric conformation, modulates its DNA binding properties, stimulates SSA activity and promotes strand invasion. Our work introduces for the first time RAD52 as another interacting partner of DSS1 and shows that both proteins are important players in the SSA and BIR pathways of DSB repair.


Subject(s)
Carcinogenesis/genetics , Homologous Recombination/genetics , Proteasome Endopeptidase Complex/genetics , Rad52 DNA Repair and Recombination Protein/genetics , BRCA2 Protein/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , DNA-Binding Proteins/genetics , Genome, Human/genetics , Genomic Instability/genetics , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
5.
Nucleic Acids Res ; 46(8): 3967-3980, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29481689

ABSTRACT

Formation of RAD51 filaments on single-stranded DNA is an essential event during homologous recombination, which is required for homology search, strand exchange and protection of replication forks. Formation of nucleoprotein filaments (NF) is required for development and genomic stability, and its failure is associated with developmental abnormalities and tumorigenesis. Here we describe the structure of the human RAD51 NFs and of its Walker box mutants using electron microscopy. Wild-type RAD51 filaments adopt an 'open' conformation when compared to a 'closed' structure formed by mutants, reflecting alterations in helical pitch. The kinetics of formation/disassembly of RAD51 filaments show rapid and high ssDNA coverage via low cooperativity binding of RAD51 units along the DNA. Subsequently, a series of isomerization or dissociation events mediated by nucleotide binding state creates intrinsically dynamic RAD51 NFs. Our findings highlight important a mechanistic divergence among recombinases from different organisms, in line with the diversity of biological mechanisms of HR initiation and quality control. These data reveal unexpected intrinsic dynamic properties of the RAD51 filament during assembly/disassembly, which may be important for the proper control of homologous recombination.


Subject(s)
DNA, Single-Stranded/metabolism , Rad51 Recombinase/metabolism , Rad51 Recombinase/ultrastructure , Adenine Nucleotides/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Biological Evolution , Cryoelectron Microscopy , Humans , Kinetics , Models, Molecular , Mutation , Rad51 Recombinase/genetics
6.
Cell Rep ; 21(2): 333-340, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29020621

ABSTRACT

Fanconi anemia (FA) is a genetic disorder characterized by a defect in DNA interstrand crosslink (ICL) repair, chromosomal instability, and a predisposition to cancer. Recently, two RAD51 mutations were reported to cause an FA-like phenotype. Despite the tight association of FA/HR proteins with replication fork (RF) stabilization during normal replication, it remains unknown how FA-associated RAD51 mutations affect replication beyond ICL lesions. Here, we report that these mutations fail to protect nascent DNA from MRE11-mediated degradation during RF stalling in Xenopus laevis egg extracts. Reconstitution of DNA protection in vitro revealed that the defect arises directly due to altered RAD51 properties. Both mutations induce pronounced structural changes and RAD51 filament destabilization that is not rescued by prevention of ATP hydrolysis due to aberrant ATP binding. Our results further interconnect the FA pathway with DNA replication and provide mechanistic insight into the role of RAD51 in recombination-independent mechanisms of genome maintenance.


Subject(s)
DNA Replication , Fanconi Anemia/genetics , Mutation , Rad51 Recombinase/metabolism , Adenosine Triphosphate/metabolism , Animals , Humans , MRE11 Homologue Protein/metabolism , Protein Binding , Protein Stability , Rad51 Recombinase/genetics , Xenopus
7.
DNA Repair (Amst) ; 30: 80-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25769792

ABSTRACT

The RECQ4 protein belongs to the RecQ helicase family, which plays crucial roles in genome maintenance. Mutations in the RECQ4 gene are associated with three insidious hereditary disorders: Rothmund-Thomson, Baller-Gerold, and RAPADILINO syndromes. These syndromes are characterized by growth deficiency, radial ray defects, red rashes, and higher predisposition to malignancy, especially osteosarcomas. Within the RecQ family, RECQ4 is the least characterized, and its role in DNA replication and repair remains unknown. We have identified several DNA binding sites within RECQ4. Two are located at the N-terminus and one is located within the conserved helicase domain. N-terminal domains probably cooperate with one another and promote the strong annealing activity of RECQ4. Surprisingly, the region spanning 322-400aa shows a very high affinity for branched DNA substrates, especially Holliday junctions. This study demonstrates biochemical activities of RECQ4 that could be involved in genome maintenance and suggest its possible role in processing replication and recombination intermediates.


Subject(s)
DNA, Cruciform/metabolism , RecQ Helicases/metabolism , Base Sequence , Binding Sites , DNA Replication , Homologous Recombination , Humans , Protein Multimerization , Protein Structure, Tertiary , RecQ Helicases/chemistry
8.
J Inorg Biochem ; 114: 15-23, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22687561

ABSTRACT

Design of new antitumor Pt drugs is currently also focused on those new Pt complexes which form on DNA major adducts that can hardly be removed by DNA repair systems. An attempt of this kind has already been done by designing and synthesizing new antitumor azolato-bridged dinuclear Pt(II) complexes, such as [{cis-Pt(NH(3))(2)}(2)(µ-OH)(µ-pyrazolate)](2+) (AMPZ). This new Pt(II) complex exhibits markedly higher toxic effects in some tumor cell lines than conventional mononuclear cisplatin. The primary objective in the present study was to further delineate differences in the interactions of AMPZ and cisplatin with natural, high-molecular-mass DNA using a combination of biochemical and molecular biophysics techniques. The results demonstrate for the first time that little conformational distortions induced by AMPZ in highly polymeric DNA with a random nucleotide sequence represent a structural motif recognizable by DNA repair systems less efficiently than distortions induced by cisplatin. Thus, DNA adducts of azolato-bridged dinuclear Pt(II) complexes can escape repair mechanisms more easily than those of cisplatin, which may potentiate antitumor effects of these new metallodrugs in cancer cells.


Subject(s)
Antineoplastic Agents/chemical synthesis , DNA Adducts/chemistry , DNA Repair/drug effects , Organoplatinum Compounds/chemical synthesis , Platinum/chemistry , Pyrazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Base Sequence , Cell Survival/drug effects , Cisplatin/pharmacology , DNA Damage , HeLa Cells , Humans , Molecular Sequence Data , Nucleic Acid Conformation , Nucleic Acid Denaturation , Organoplatinum Compounds/pharmacology , Plasmids , Pyrazoles/pharmacology , Spectrometry, Fluorescence , Thiourea/chemistry
9.
Biochim Biophys Acta ; 1820(10): 1502-11, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22683702

ABSTRACT

BACKGROUND: The design of anticancer metallodrugs is currently focused on platinum complexes which form on DNA major adducts that cannot readily be removed by DNA repair systems. Hence, antitumor azolato-bridged dinuclear Pt(II) complexes, such as [{cis-Pt(NH(3))(2)}(2)(µ-OH)(µ-pyrazolate)](2+) (AMPZ), have been designed and synthesized. These complexes exhibit markedly higher toxic effects in tumor cell lines than mononuclear conventional cisplatin. METHODS: Biophysical and biochemical aspects of the alterations induced in short DNA duplexes uniquely and site-specifically modified by the major DNA adduct of AMPZ, namely 1,2-GG intrastrand cross-links, were examined. Attention was also paid to conformational distortions induced in DNA by the adducts of AMPZ and cisplatin, associated alterations in the thermodynamic stability of the duplexes, and recognition of these adducts by high-mobility-group (HMG) domain proteins. RESULTS: Chemical probing of DNA conformation, DNA bending studies and translesion synthesis by DNA polymerase across the platinum adduct revealed that the distortion induced in DNA by the major adduct of AMPZ was significantly less pronounced than that induced by similar cross-links from cisplatin. Concomitantly, the cross-link from AMPZ reduced the thermodynamic stability of the modified duplex considerably less. In addition, HMGB1 protein recognizes major DNA adducts of AMPZ markedly less than those of cisplatin. GENERAL SIGNIFICANCE: The experimental evidence demonstrates why the major DNA adducts of the new anticancer azolato-bridged dinuclear Pt(II) complexes are poor substrates for DNA repair observed in a previously published report. The relative resistance to DNA repair explains why these platinum complexes show major pharmacological advantages over cisplatin in tumor cells.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , DNA Adducts/chemistry , DNA Adducts/metabolism , Energy Metabolism/physiology , Platinum/chemistry , Animals , Antineoplastic Agents/pharmacology , Base Sequence , Calorimetry, Differential Scanning , Cisplatin/chemistry , Cisplatin/metabolism , Cisplatin/pharmacology , Humans , Models, Biological , Molecular Conformation , Molecular Probes/chemistry , Nucleic Acid Conformation , Nucleic Acid Denaturation/drug effects , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/metabolism , Organoplatinum Compounds/pharmacology , Platinum/metabolism , Polymerization/drug effects , Rats
10.
J Biol Inorg Chem ; 17(6): 891-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22638735

ABSTRACT

Carboplatin, an analogue of "classical" cis-diamminedichloridoplatinum(II) (cisplatin), is a widely used second-generation platinum anticancer drug. Cytotoxicity of cisplatin and carboplatin is mediated by platinum-DNA adducts. Markedly higher concentrations of carboplatin are required, and the rate of adduct formation is considerably slower. The reduced toxic effects in tumor cells and a more acceptable side-effect profile are attributable to the lower reactivity of carboplatin with nucleophiles, since the cyclobutanedicarboxylate ligand is a poorer leaving group than the chlorides in cisplatin. Recently, platinum complexes were shown to be particularly attractive as potential photochemotherapeutic anticancer agents. Selective photoactivation of platinum complexes by irradiation of cancer cells may avoid enhancement of toxic side-effects, but may increase toxicity selectively in cancer cells and extend the application of photoactivatable platinum complexes to resistant cells and to a wider range of cancer types. Therefore, it was of interest to examine whether carboplatin can be affected by irradiation with light to the extent that its DNA binding and cytotoxic properties are altered. We have found that carboplatin is converted to species capable of enhanced DNA binding by UVA irradiation and consequently its toxicity in cancer cells is markedly enhanced. Recent advances in laser and fiber-optic technologies make it possible to irradiate also internal organs with light of highly defined intensity and wavelength. Thus, carboplatin is a candidate for use in photoactivated cancer chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/radiation effects , Carboplatin/pharmacology , Carboplatin/radiation effects , DNA/chemistry , Photochemical Processes/radiation effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Binding Sites/drug effects , Carboplatin/chemistry , Carboplatin/toxicity , Cattle , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA/drug effects , DNA Damage/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Kinetics , Plasmids , Structure-Activity Relationship , Tumor Cells, Cultured , Ultraviolet Rays
11.
Arch Microbiol ; 192(1): 41-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19949940

ABSTRACT

Aerobic anoxygenic phototrophs (AAPs) are prokaryotic microorganisms capable of harvesting light using bacteriochlorophyll-based reaction centres. Marine AAP communities are generally dominated by species belonging to the Roseobacter clade. For this reason, we used marine Roseobacter-related strain COL2P as a model organism to characterize its photosynthetic apparatus, level of pigmentation and expression of photosynthetic complexes. This strain contained functional photosynthetic reaction centres with bacteriochlorophyll a and spheroidenone as the main light-harvesting pigments, but the expression of the photosynthetic apparatus was significantly reduced when compared to truly photoautotrophic species. Moreover, the absence of peripheral light-harvesting complexes largely reduced its light-harvesting capacity. The size of the photosynthetic unit was limited to 35.4 +/- 1.0 BChl a molecules supplemented by the same number of spheroidenone molecules. The contribution of oxidative phosphorylation and photophosphorylation was analysed by respiration and fluorometric measurements. Our results indicate that even with a such reduced photosynthetic apparatus, photophosphorylation provides up to three times higher electron fluxes than aerobic respiration. These results suggest that light-derived energy can provide a substantial fraction of COL2P metabolic needs.


Subject(s)
Photosynthesis , Roseobacter/metabolism , Aerobiosis/genetics , Amino Acid Sequence , Anaerobiosis/genetics , Bacterial Proteins/genetics , Bacteriochlorophyll A/genetics , Bacteriochlorophylls/genetics , Carotenoids/metabolism , Conjugation, Genetic , Gene Expression Regulation, Bacterial , Genes, Bacterial , Light , Oxygen Consumption/genetics , Photophosphorylation , Photosynthesis/genetics , Photosynthetic Reaction Center Complex Proteins/genetics , Phylogeny , RNA, Bacterial/analysis , RNA, Messenger/analysis , Roseobacter/genetics , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...