Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 97: 238-246, 2019 09.
Article in English | MEDLINE | ID: mdl-31132660

ABSTRACT

In the present article, we investigated the sliding of discontinuous tendon subcomponents and the variation of nonhomogeneous deformation in the human Achilles tendon (AT) over time using uniaxial tensile and relaxation tests. The deformation and the resulting strain distribution under uniaxial tension are examined using a vision-based 3-D digital image correlation (DIC) system, which allows estimation of the strain field in the axial and lateral directions. Relaxation test under B-mode ultrasound imaging with the use of DIC method provides information about the local strain variation over time in the axial and anteroposterior directions. The observed nonhomogeneous deformation, a result from the twisted structure of the tendon, shows both compressive and tensile transverse strains that can generate interfascicular matrix (IFM) failure and initiate water accumulation in the course of tendinopathy. Moreover, using B-mode elastography with the DIC method, we have observed areas of low stiffness when the strain values exceed the strength limits, and this could correspond to IFM carrying the load between discontinuous tendon subcomponents. Thus, IFM carrying complex multiscale stresses may be responsible for the strength and viscoelastic properties of the AT. The results presented here reveal a new pathomechanism of AT failure. This could be useful in further studies on tendinopathy as well as effective planning of the AT therapy.


Subject(s)
Achilles Tendon/pathology , Tensile Strength , Aged , Biomechanical Phenomena , Cadaver , Elasticity , Elasticity Imaging Techniques , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Tendinopathy , Ultrasonography , Viscosity
2.
Scand J Med Sci Sports ; 27(12): 1705-1715, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28139009

ABSTRACT

The Achilles tendon (AT) consists of fibers originating from the soleus muscle (SOL), which lies deep, and the medial (GM) and lateral (GL) heads of the gastrocnemius muscle, which lie superficial. As the fibers descend toward the insertion of the AT, the individual subtendons twist around each other. The aim of this study was to investigate the twisted structure of the AT and its individual subtendons. Specimens of the AT, with preserved calcaneal bone and a fragment of the triceps surae muscle, were obtained from 53 fresh-frozen, male cadavers (n=106 lower limbs). The angle of torsion of each of the AT's subtendons was measured using a specially designed and 3D-printed tool. The mean distance between the most distal fibers of the triceps surae muscle and the superior border of the calcaneal bone was 60.77±14.15 mm. The largest component of the AT at the level of its insertion into the calcaneal bone is the subtendon from the GL (44.43%), followed by the subtendon from SOL (27.89%), and the subtendon from GM (27.68%). The fibers originating from the GM rotate on average 28.17±15.15°, while the fibers originating from the GL and SOL twist 135.98±33.58° and 128.58±29.63°, respectively. The torsion of superficial fibers (GM) comprising the AT is significantly lower than that of deeper fibers (GL and SOL). The cross-sectional area of the AT is smaller at the level of the musculo-tendinous junction than at the level of its insertion. This study illustrates the three types of the AT with differently twisting subtendons, as well as a generalized model of the AT. Types of AT torsion may potentially alter the biomechanical properties of the tendon, thus possibly influencing the pathophysiologic mechanisms leading to the development of various tendinopathies.


Subject(s)
Achilles Tendon/anatomy & histology , Adolescent , Adult , Aged , Aged, 80 and over , Cadaver , Calcaneus/anatomy & histology , Dissection , Humans , Male , Middle Aged , Models, Anatomic , Muscle, Skeletal/anatomy & histology , Young Adult
3.
J Mol Graph Model ; 67: 54-61, 2016 06.
Article in English | MEDLINE | ID: mdl-27183037

ABSTRACT

In this work, we investigate the influence of the surrounding environment and the initial density on the decomposition kinetics of polylactide (PLA). The decomposition of the amorphous PLA was investigated by means of reactive molecular dynamics simulations. A computational model simulates the decomposition of PLA polymer inside the bulk, due to the assumed lack of removal of reaction products from the polymer matrix. We tracked the temperature dependency of the water and carbon monoxide production to extract the activation energy of thermal decomposition of PLA. We found that an increased density results in decreased activation energy of decomposition by about 50%. Moreover, initiation of decomposition of the amorphous PLA is followed by a rapid decline in activation energy caused by reaction products which accelerates the hydrolysis of esters. The addition of water molecules decreases initial energy of activation as well as accelerates the decomposition process. Additionally, we have investigated the dependency of density on external loading. Comparison of pressures needed to obtain assumed densities shows that this relationship is bilinear and the slope changes around a density equal to 1.3g/cm(3). The conducted analyses provide an insight into the thermal decomposition process of the amorphous phase of PLA, which is particularly susceptible to decomposition in amorphous and semi-crystalline PLA polymers.


Subject(s)
Molecular Dynamics Simulation , Polyesters/chemistry , Carbon Monoxide/chemistry , Kinetics , Oxygen/chemistry , Temperature , Time Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...