Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 189(12): 606, 2017 Nov 04.
Article in English | MEDLINE | ID: mdl-29103100

ABSTRACT

The bark of Moringa oleifera, a cheap and readily available natural biopolymeric resource material, found to significantly reduce coliform load and turbidity in contaminated water is investigated in this paper. Its surface and adsorptive properties are investigated to explore its adsorptive potential in removing V(V) from aqueous solutions. Surface properties were investigated using FTIR, HRSEM/EDS, IC, and BET-N2 adsorption techniques. Adsorptive properties were investigated by optimizing adsorption parameters such as pH, temperature, initial metal concentration, and adsorbent dosage, using V(V) as an adsorbate. The adsorption-desorption isotherms are typical of type II with a H3 hysteresis loop and is characteristic of a largely macroporous material. Bottle ink pores are observed, which can provide good accessibility of the active sites, even though the internal BET surface area is typically low (1.79 g/m2). Solution pH significantly influences the adsorptive potential of the material. The low surface area negatively impacts on the adsorption capacity, but is compensated for by the exchangeable anions (Cl-, F-, PO43-, NO3-, and SO42-) and cations (Ca2+, K+, Mg2+, and Al3+) at the surface and the accessibility of the active sites. Adsorption isotherm modeling show that the surface is largely heterogeneous with complex multiple sites and adsorption is not limited to monolayer.


Subject(s)
Biodegradation, Environmental , Moringa oleifera/chemistry , Plant Bark/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Anions , Environmental Monitoring , Hydrogen-Ion Concentration , Kinetics , Solutions , Surface Properties , Temperature , Water/chemistry , Water Microbiology , Water Pollutants, Chemical/analysis , Water Purification/methods
2.
Ecotoxicol Environ Saf ; 144: 396-401, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28647607

ABSTRACT

The green leafy vegetables (Mormodica involucrate, Bidens pilosa and Amaranthus spinosus) are economic; seasonal; locally grown and easily available; easy to propagate and store; highly nutritious food substances that form an important component of diets. This study applies a physiology based extraction technique (PBET) to mimic digestion of these vegetables to determine the fraction of essential (Fe and Zn) and non-essential elements (Cd, Cr and Pb) that are made available for absorption after ingestion. Prior to the application of the PBET, the vegetables were cooked adopting indigenous Swazi cooking methods. Cooking mobilized most of the metals out of the vegetable mass, and the final substrate concentrations are: raw > cooked > supernatant for all the metals, and the order of average metal leaching was: Pb (82.2%) >Cr (70.6%) >Zn (67.5%) >Fe (60.2%) >Cd (53.6%). This meant that the bioavailable concentrations are significantly lower than in the original vegetable mass, if only the solid mass is consumed. Bioaccessibility was higher in the gastric tract than in the intestinal phases of the PBET for all the metals in all the vegetables. Risk assessment protocols employed on the non-essential elements (Cr, Cd and Pb) showed that the associated risks of ingesting metal contaminated vegetables are higher for children, than they are for adults, based on the target hazard quotient (THQ) index. However, the overall health risk associated with ingestion of these metals is low, for both children and adults, based on the HR index. Conclusively, this study expounds on the nutritional and risk benefits associated with ingesting naturally grown vegetables.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Trace Elements/analysis , Vegetables/chemistry , Adult , Biological Availability , Child , Cooking , Digestion , Eswatini , Humans , Risk Assessment , Vegetables/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...