Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 192: 207-217, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36265205

ABSTRACT

Drought stress will lead to a decrease in tomato yield and poor flavour, yield and quality, resulting in economic losses in agricultural production. Mining the key genes regulating tomato drought resistance is of great significance to improve the drought resistance of tomato plants. The cell wall can directly participate in the plant drought stress response as one of the main components of the cell wall, and the regulation of pectin content in plant drought resistance is still unclear. Here, the candidate gene Solyc08g006690 (Slpmei27) was obtained by fine mapping based on genome sequencing technology (BSA-seq) of late-maturing stress-resistant tomato mutants found in the field. Slpmei27 is expressed in the cell wall. The transient silencing of Slpmei27 by VIGS significantly improved the drought resistance of tomato. Meanwhile, Slpmei27 silencing could significantly change the cell wall structure of plants, change the stomatal pass rate, reduce the water loss rate of plants, improve the scavenging ability of reactive oxygen species, change the redox balance in plants, and thus improve the drought resistance of tomato. The promoter region of this gene contains a large number of hormone-response and stress-response binding sites. The promoter region of the Slpmei27 gene in the mutant could lower the expression of downstream genes. Through this study, the mechanism by which Slpmei27 improves tomato drought resistance was revealed, and the relationship between pectin methyl ester metabolism and plant drought resistance was established, providing a theoretical basis for the production of high-quality tomato materials with high drought resistance.

2.
Plant Sci ; 324: 111457, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36089196

ABSTRACT

Photosynthesis, as an important biological process of plants, produces organic substances for plant growth and development. Although the molecular mechanisms of photosynthesis had been well investigated, the relationship between chlorophyll synthesis and photosynthesis remains largely unknown. The leaf-color mutant was an ideal material for studying photosynthesis and chlorophyll synthesis, which had been seldom investigated in tomato. Here, we obtained a yellow leaf tomato mutant ym (The mutant plants from the line of zs4) in field. Transmission electron microscopy (TEM) and photosynthetic parameters results demonstrated that chloroplast's structure was obviously destroyed and photosynthetic capacity gets weak. The mutant was hybridized with the control to construct the F2 segregation population for sequencing. Slym1 gene, controlling yellow mutant trait, was identified using Bulked Segregation Analysis. Slym1 was up-regulated in the mutant and Slym1 was located in the nucleus. The genes associated with photosynthesis and chlorophyll synthesis were down-regulated in Slym1-OE transgenic tomato plants. The results suggested that Slym1 negatively regulate photosynthesis. Photosynthetic pigment synthesis related genes HEMA, HEMB1, CHLG and CAO were up-regulated in Slym1 silencing plants. The redundant Slym1 binding the intermediate proteins MP resulting in hindering the interaction between MP and HY5 due to the Slym1 with a high expression level in ym mutant, lead to lots of the HY5 with unbound state accumulates in cells, that could accelerate the decomposition of chlorophyll. Therefore, the yellow leaf-color mutant ym could be used as an ideal material for further exploring the relationship between leaf color mutant and photosynthesis and the specific mechanism.


Subject(s)
Chlorophyll , Solanum lycopersicum , Chlorophyll/metabolism , Etiolation , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Photosynthesis/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism
3.
Genes (Basel) ; 12(3)2021 03 14.
Article in English | MEDLINE | ID: mdl-33799396

ABSTRACT

F-box genes play an important role in the growth and development of plants, but there are few studies on its role in a plant's response to abiotic stresses. In order to further study the functions of F-box genes in tomato (Solanum lycopersicum, Sl), a total of 139 F-box genes were identified in the whole genome of tomato using bioinformatics methods, and the basic information, transcript structure, conserved motif, cis-elements, chromosomal location, gene evolution, phylogenetic relationship, expression patterns and the expression under cold stress, drought stress, jasmonic acid (JA) treatment and salicylic acid (SA) treatment were analyzed. The results showed that SlFBX genes were distributed on 12 chromosomes of tomato and were prone to TD (tandem duplication) at the ends of chromosomes. WGD (whole genome duplication), TD, PD (proximal duplication) and TRD (transposed duplication) modes seem play an important role in the expansion and evolution of tomato SlFBX genes. The most recent divergence occurred 1.3042 million years ago, between SlFBX89 and SlFBX103. The cis-elements in SlFBX genes' promoter regions were mainly responded to phytohormone and abiotic stress. Expression analysis based on transcriptome data and qRT-PCR (Real-time quantitative PCR) analysis of SlFBX genes showed that most SlFBX genes were differentially expressed under abiotic stress. SlFBX24 was significantly up-regulated at 12 h under cold stress. This study reported the SlFBX gene family of tomato for the first time, providing a theoretical basis for the detailed study of SlFBX genes in the future, especially the function of SlFBX genes under abiotic stress.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Solanum lycopersicum , Chromosomes, Plant/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...