Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Transl Pediatr ; 10(1): 204-208, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33633954

ABSTRACT

Pearson syndrome (PS), also known as Pearson marrow-pancreas syndrome, is a rare, multi-systemic disorder caused by large-scale deletion of mitochondrial DNA (mtDNA) ranging from 2.3 kb to 9 kb, with 4,977 bp in length as the most common variant. This paper reported a novel mtDNA deletion of 4,734 bp in size, spanning from nucleotide 11,220 to 15,953. The infant suffered from chronic hepatomegaly, liver dysfunction, anemia and lactic acidosis over 1 year. Evidences of any infections were negative. Bone marrow aspiration and whole exome sequencing covering nearly 20,000 nucleus genes were performed when aged 3.3 and 6 months, respectively, but no genetic cause was identified. However, at his age 13 months, multiplex ligation-dependent probe amplification assay of the mtDNA in the patient detected a large deletion of 4,734 bp in size spanning the mitochondrial genes MTND4, MTTH, MTTS2, MTTL2, MTND5, MTND6, MTTE, MTCYB and MTTT which were functionally crucial for the intact oxidative phosphorylation pathway and adenosine triphosphate production, and PS was thus definitely diagnosed. This large deletion was negative in his parents and elder brother. Oral ursodeoxycholic acid, fat-soluble vitamins and blood transfusions were administrated, his clinical and laboratory presentations remained stable so far, but the long-term prognosis needed to be followed up. These findings enriched the variant spectrum of mtDNA, and demonstrated the importance of considering mitochondrial disorder in patient with intractable anemia, liver dysfunction and lactic acidosis as well as the significance of appropriate choosing of relevant genetic tools in the etiology diagnosis of such patients.

3.
Clin Chem Lab Med ; 50(4): 649-54, 2011 Dec 17.
Article in English | MEDLINE | ID: mdl-22505528

ABSTRACT

BACKGROUND: The aim of this study was to establish a sensitive method that can detect the presence of not only the common but also the unusual or unknown α-globin gene deletions for screening of α-thalassemia. We used quantitative multiplex PCR of short fluorescent fragments (QMPSF) for the α-globin genes (HBA) to screen α-thalassemia deletions. METHODS: We set up and validated HBA-QMPSF using 50 negative and 100 positive controls of deletional α-thalassemia. To evaluate its ability to detect the presence of the common and unusual or unknown α-globin gene deletions, 579 unrelated samples were simultaneously analyzed using this assay and multiplex Gap polymerase chain reaction (Gap-PCR). The inconsistent results were further confirmed by multiplex ligation-dependent probe amplification (MLPA). RESULTS: HBA-QMPSF was capable of detecting α-globin gene deletions with an acceptable variability as shown by mean values (SD) of allele dosage for the heterozygous deleted control obtained from intra- and inter-experimental replicates [0.63 (0.01) and 0.61 (0.03)]. In 572 out of the 579 unrelated subjects, HBA-QMPSF and multiplex Gap-PCR gave consistent results. In seven cases which were finally proved to be composed of one rare deletion--Thai/-α3.7, one novel deletion--SEA/-α2.8, four αααanti3.7/αα and one αααanti4.2/αα triplications, HBA-QMPSF showed deletion or duplication in the α-globin gene while multiplex Gap-PCR failed to give the correct diagnosis. CONCLUSIONS: HBA-QMPSF is able to detect the presence of the common and unusual or unknown α-thalassemia deletions and duplications. It can be used as an initial screening test for α-thalassemia caused by HBA gene copy number alteration.


Subject(s)
DNA Mutational Analysis/methods , Fluorescent Dyes/chemistry , Gene Deletion , Gene Duplication , Polymerase Chain Reaction/methods , alpha-Globins/genetics , Reproducibility of Results , alpha-Thalassemia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...