Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Haematol ; 204(6): 2429-2441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38665119

ABSTRACT

Primary immune thrombocytopenia (ITP) is linked to specific pathogenic mechanisms, yet its relationship with mitophagy and ferroptosis is poorly understood. This study aimed to identify new biomarkers and explore the role of mitophagy and ferroptosis in ITP pathogenesis. Techniques such as differential analysis, Mfuzz expression pattern clustering, machine learning, gene set enrichment analysis, single-cell RNA sequencing (scRNA-seq) and immune infiltration analysis were employed to investigate the molecular pathways of pivotal genes. Two-sample Mendelian randomization (TSMR) assessed the causal effects in ITP. Key genes identified in the training set included GABARAPL1, S100A8, LIN28A, and GDF9, which demonstrated diagnostic potential in validation sets. Functional analysis indicated these genes' involvement in ubiquitin phosphorylation, PPAR signalling pathway and T-cell differentiation. Immune infiltration analysis revealed increased macrophage presence in ITP, related to the critical genes. scRNA-seq indicated reduced GABARAPL1 expression in ITP bone marrow macrophages. TSMR linked S100A8 with ITP diagnosis, presenting an OR of 0.856 (95% CI = 0.736-0.997, p = 0.045). The study pinpointed four central genes, GABARAPL1, S100A8, LIN28A, and GDF9, tied to mitophagy and ferroptosis in ITP. It posits that diminished GABARAPL1 expression may disrupts ubiquitin phosphorylation and PPAR signalling, impairing mitophagy and inhibiting ferroptosis, leading to immune imbalance.


Subject(s)
Ferroptosis , Mitophagy , Purpura, Thrombocytopenic, Idiopathic , Humans , Ferroptosis/genetics , Purpura, Thrombocytopenic, Idiopathic/genetics , Male , Female , Biomarkers , Middle Aged
2.
Cell Transplant ; 32: 9636897231213271, 2023.
Article in English | MEDLINE | ID: mdl-38059278

ABSTRACT

Mesenchymal stem cells (MSCs) have become a promising therapeutic method. More safety data are needed to support clinical studies in more diseases. The aim of this study was to investigate the short- and long-term safety of human bone marrow-derived MSCs (hBMMSCs) in mice. In the present study, we injected control (saline infusion only), low (1.0 × 106/kg), medium (1.0 × 107/kg), and high (1.0 × 108/kg) concentrations of hBMMSCs into BALB/c mice. The safety of the treatment was evaluated by observing changes in the general condition, hematology, biochemical indices, pathology of vital organs, lymphocyte subsets, and immune factor levels on days 14 and 150. In the short-term toxicity test, no significant abnormalities were observed in the hematological and biochemical parameters between the groups injected with hBMMSCs, and no significant damage was observed in the major organs, such as the liver and lung. In addition, no significant differences were observed in the toxicity-related parameters among the groups in the long-term toxicity test. Our study also demonstrates that mice infused with different doses of hBMMSCs do not show abnormal immune responses in either short-term or long-term experiments. We confirmed that hBMMSCs are safe through a 150-day study, demonstrating that this is a safe and promising therapy and offering preliminary safety evidence to promote future clinical applications of hBMMSCs in different diseases.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mice , Animals , Mesenchymal Stem Cells/physiology , Bone Marrow , Liver , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Bone Marrow Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...