Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 206: 114377, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34563978

ABSTRACT

The evaluation of true penicillin allergy is significant to reduce its occurrence and the overdiagnosis before anti-infective treatment. However, the currently available methods with high specificity still face the problem of low sensitivity, thereby easily leading to false negatives. Herein, an alkyne responsive surface-enhanced Raman scattering (SERS) immunosensor is reported for ultrasensitive detection of penicillin allergen penicilloyl protein (P-protein) by using Au-Ag alloy nanoparticles@(antibody + alkyne probe) (as SERS immunoprobe) together with Ag nanofilm modified by antibody (as SERS capture substrate). The SERS immunoassay integrates the interference-free Raman response of high wavenumber region (2212 cm-1) and specific capture antibody with high affinity to selectively recognize P-protein from complicated sample. Meanwhile, the target-induced near-field coupling effect between localized surface plasmon resonances of individual SERS immunoprobe and capture substrate enables the detection of P-protein as low as pg/mL level, and the limit of detection can reach 0.329 pg/mL that is about 6 orders of magnitude lower than the limit defined protein residue (causing penicillin allergy). With the ultrasensitivity and specific selectivity, the proposed SERS immunoassay platform can precisely evaluate the content of P-protein in blood sample or penicillin drugs. It will be a potential tool to monitor allergic reaction to penicillin and better understand the mechanism of penicillin hypersensitivity.


Subject(s)
Biosensing Techniques , Hypersensitivity , Metal Nanoparticles , Alkynes , Gold , Humans , Immunoassay , Penicillins , Silver , Spectrum Analysis, Raman
2.
Anal Chim Acta ; 1181: 338902, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34556229

ABSTRACT

Methylglyoxal (MGO) is the primary material basis for the non-peroxide antibacterial activity (NPA) of manuka honey from New Zealand. Therefore, it is necessary to identify the quality or discriminate the grade of honey because no all manuka honeys on the market display the NPA. The current routine method employed for the detection of MGO involves high-performance liquid chromatography (HPLC) test. However, it requires long time (∼8 h) for sample derivatization. Herein, we report an intrinsic Raman signal amplification strategy for the rapid identification and detection of MGO by using silver-coated gold nanoparticles (Au@Ag NPs) along with a high selective surface-enhanced Raman scattering (SERS) probe 8-thioguanosine (8-TG). 8-TG is synthesized via the derivatization of 8-bromoguanosine (8-BG) with thiourea, and its Raman peak assignments were confirmed by computer simulation. The detection is performed through the Raman intensity ratio (I631/I700) variation of N2-(1-carboxyethyl)-thioguanosine (CETG) formed by the reaction between 8-TG and MGO on surface of Au@Ag NPs, where one CETG Raman intensity at 631 cm-1 increases while the other one at 700 cm-1 decreases oppositely. The opposite change not only yields an intrinsic Raman signal amplification, but also provides built-in correction. As a result, the proposed SERS method exhibits high sensitivity and accuracy. In addition, the whole analytical test is achieved within ∼20 min. The method can be used for the fast detection of MGO in manuka honey and discrimination of the honey grade.


Subject(s)
Honey , Metal Nanoparticles , Computer Simulation , Gold , Honey/analysis , Pyruvaldehyde , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...