Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 20(23)2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31775351

ABSTRACT

Reducing nitrogen (N) input is a key measure to achieve a sustainable rice production in China, especially in Jiangsu Province. Tiller is the basis for achieving panicle number that plays as a major factor in the yield determination. In actual production, excessive N is often applied in order to produce enough tillers in the early stages. Understanding how N regulates tillering in rice plants is critical to generate an integrative management to reduce N use and reaching tiller number target. Aiming at this objective, we utilized RNA sequencing and weighted gene co-expression network analysis (WGCNA) to compare the transcriptomes surrounding the shoot apical meristem of indica (Yangdao6, YD6) and japonica (Nipponbare, NPB) rice subspecies. Our results showed that N rate influenced tiller number in a different pattern between the two varieties, with NPB being more sensitive to N enrichment, and YD6 being more tolerant to high N rate. Tiller number was positively related to N content in leaf, culm and root tissue, but negatively related to the soluble carbohydrate content, regardless of variety. Transcriptomic comparisons revealed that for YD6 when N rate enrichment from low (LN) to medium (MN), it caused 115 DEGs (LN vs. MN), from MN to high level (HN) triggered 162 DEGs (MN vs. HN), but direct comparison of low with high N rate showed a 511 DEGs (LN vs. HN). These numbers of DEG in NPB were 87 (LN vs. MN), 40 (MN vs. HN), and 148 (LN vs. HN). These differences indicate that continual N enrichment led to a bumpy change at the transcription level. For the reported sixty-five genes which affect tillering, thirty-six showed decent expression in SAM at tiller starting phase, among them only nineteen being significantly influenced by N level, and two genes showed significant interaction between N rate and variety. Gene ontology analysis revealed that the majority of the common DEGs are involved in general stress responses, stimulus responses, and hormonal signaling process. WGCNA network identified twenty-two co-expressing gene modules and ten candidate hubgenes for each module. Several genes associated with tillering and N rate fall on the related modules. These indicate that there are more genes participating in tillering regulation in response to N enrichment.


Subject(s)
Gene Regulatory Networks/drug effects , Meristem/genetics , Nitrogen/pharmacology , Oryza/genetics , Plant Proteins/genetics , Plant Shoots/genetics , Transcriptome , Gene Expression Profiling , Meristem/drug effects , Oryza/classification , Oryza/drug effects , Plant Shoots/drug effects , Sequence Analysis, RNA
2.
Int J Mol Sci ; 20(18)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31491955

ABSTRACT

Japonica and indica are two important subspecies in cultivated Asian rice. Irradiation is a classical approach to induce mutations and create novel germplasm. However, little is known about the differential response between japonica and indica rice after γ radiation. Here, we utilized the RNA sequencing and Weighted Gene Co-expression Network Analysis (WGCNA) to compare the transcriptome differences between japonica Nipponbare (NPB) and indica Yangdao6 (YD6) in response to irradiation. Japonica subspecies are more sensitive to irradiation than the indica subspecies. Indica showed a higher seedling survival rate than japonica. Irradiation caused more extensive DNA damage in shoots than in roots, and the severity was higher in NPB than in YD6. GO and KEGG pathway analyses indicate that the core genes related to DNA repair and replication and cell proliferation are similarly regulated between the varieties, however the universal stress responsive genes show contrasting differential response patterns in japonica and indica. WGCNA identifies 37 co-expressing gene modules and ten candidate hub genes for each module. This provides novel evidence indicating that certain peripheral pathways may dominate the molecular networks in irradiation survival and suggests more potential target genes in breeding for universal stress tolerance in rice.


Subject(s)
Gamma Rays , Gene Expression Regulation, Plant/radiation effects , Gene Regulatory Networks , Oryza/genetics , Oryza/radiation effects , Transcriptome , Computational Biology/methods , DNA Damage/genetics , Gene Expression Profiling , Gene Ontology , Radiation Tolerance/genetics , Seedlings/genetics , Seedlings/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...