Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 153: 106515, 2023 02.
Article in English | MEDLINE | ID: mdl-36610217

ABSTRACT

Transgelin-2 (TG2) is a novel promising therapeutic target for the treatment of asthma as it plays an important role in relaxing airway smooth muscles and reducing pulmonary resistance in asthma. The compound TSG12 is the only reported TG2 agonist with in vivo anti-asthma activity. However, the dynamic behavior and ligand binding sites of TG2 and its binding mechanism with TSG12 remain unclear. In this study, we performed 12.6 µs molecular dynamics (MD) simulations for apo-TG2 and TG2-TSG12 complex, respectively. The results suggested that the apo-TG2 has 4 most populated conformations, and that its binding of the agonist could expand the conformation distribution space of the protein. The simulations revealed 3 potential binding sites in 3 most populated conformations, one of which is induced by the agonist binding. Free energy decomposition uncovered 8 important residues with contributions stronger than -1 kcal/mol. Computational alanine scanning for the important residues by 100 ns conventional MD simulation for each mutated TG2-TSG12 complexes demonstrated that E27, R49 and F52 are essential residues for the agonist binding. These results should be helpful to understand the dynamic behavior of TG2 and its binding mechanism with the agonist TSG12, which could provide some structural insights into the novel mechanism for anti-asthma drug development.


Subject(s)
Anti-Asthmatic Agents , Molecular Dynamics Simulation , Anti-Asthmatic Agents/pharmacology , Muscle Proteins/agonists , Muscle Proteins/metabolism , Binding Sites , Drug Discovery , Protein Binding , Molecular Docking Simulation
2.
J Chem Inf Model ; 62(18): 4512-4522, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36053674

ABSTRACT

Five major variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged and posed challenges in controlling the pandemic. Among them, the current dominant variant, viz., Omicron, has raised serious concerns about its infectiousness and antibody neutralization. However, few studies pay attention to the effect of the mutations on the dynamic interaction network of Omicron S protein trimers binding to the host angiotensin-converting enzyme 2 (ACE2). In this study, we conducted molecular dynamics (MD) simulations and enzyme linked immunosorbent assay (ELISA) to explore the binding strength and mechanism of wild type (WT), Delta, and Omicron S protein trimers to ACE2. The results showed that the binding capacities of both the two variants' S protein trimers to ACE2 are enhanced in varying degrees, indicating possibly higher cell infectiousness. Energy decomposition and protein-protein interaction network analysis suggested that both the mutational and conserved sites make effects on the increase in the overall affinity through a variety of interactions. The experimentally determined KD values by biolayer interferometry (BLI) and the predicted binding free energies of the RBDs of Delta and Omicron to mAb HLX70 revealed that the two variants may have the high risk of immune evasion from the mAb. These results are not only helpful in understanding the binding strength and mechanism of S protein trimer-ACE2 but also beneficial for drug, especially for antibody development.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Biological Assay , Humans , Molecular Dynamics Simulation , Mutation , Peptidyl-Dipeptidase A/chemistry , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...