Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2145, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459053

ABSTRACT

Membrane consisting of ordered sub-nanochannels has been pursued in ion separation technology to achieve applications including desalination, environment management, and energy conversion. However, high-precision ion separation has not yet been achieved owing to the lack of deep understanding of ion transport mechanism in confined environments. Biological ion channels can conduct ions with ultrahigh permeability and selectivity, which is inseparable from the important role of channel size and "ion-channel" interaction. Here, inspired by the biological systems, we report the high-precision separation of monovalent and divalent cations in functionalized metal-organic framework (MOF) membranes (UiO-66-(X)2, X = NH2, SH, OH and OCH3). We find that the functional group (X) and size of the MOF sub-nanochannel synergistically regulate the ion binding affinity and dehydration process, which is the key in enlarging the transport activation energy difference between target and interference ions to improve the separation performance. The K+/Mg2+ selectivity of the UiO-66-(OCH3)2 membrane reaches as high as 1567.8. This work provides a gateway to the understanding of ion transport mechanism and development of high-precision ion separation membranes.

2.
ACS Appl Mater Interfaces ; 15(19): 23922-23930, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37145874

ABSTRACT

The unique ion-transport properties in nanoconfined pores enable nanofluidic devices with great potential in harvesting osmotic energy. The energy conversion performance could be significantly improved by the precise regulation of the "permeability-selectivity" trade-off and the ion concentration polarization effect. Here, we take the advantage of electrodeposition technique to fabricate a Janus metal-organic framework (J-MOF) membrane that possesses rapid ion-transport capability and impeccable ion selectivity. The asymmetric structure and asymmetric surface charge distribution of the J-MOF device can suppress the ion concentration polarization effect and enhance the ion charge separation, exhibiting an improved energy harvesting performance. An output power density of 3.44 W/m2 has been achieved with the J-MOF membrane at a 1000-fold concentration gradient. This work provides a new strategy for fabricating high-performance energy-harvesting devices.

3.
Small ; 19(33): e2301460, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37081282

ABSTRACT

The recognition and separation of chiral molecules with similar structure are of great industrial and biological importance. Development of highly efficient chiral recognition systems is crucial for the precise application of these chiral molecules. Herein, a homochiral zeolitic imidazolate frameworks (c-ZIF) functionalized nanochannel device that exhibits an ideal platform for electrochemical enantioselective recognition is reported. Its distinct chiral binding cavity enables more sensitive discrimination of tryptophan (Trp) enantiomer pairs than other smaller chiral amino acids owing to its size matching to the target molecule. It is found that introducing neighboring aldehyde groups into the chiral cavity will result in an inferior chiral Trp recognition due to the decreased adsorption-energy difference of D- and L-Trp on the chiral sites. This study may provide an alternative strategy for designing efficient chiral recognition devices by utilizing the homochiral reticular materials and tailoring their chiral environments.

4.
Angew Chem Int Ed Engl ; 61(22): e202202698, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35293120

ABSTRACT

High ion selectivity and permeability, as two contradictory aspects for the membrane design, highly hamper the development of osmotic energy harvesting technologies. Metal-organic frameworks (MOFs) with ultra-small and high-density pores and functional surface groups show great promise in tackling these problems. Here, we propose a facile and mild cathodic deposition method to directly prepare crack-free porphyrin MOF membranes on a porous anodic aluminum oxide for osmotic energy harvesting. The abundant carboxyl groups of the functionalized porphyrin ligands together with the nanoporous structure endows the MOF membrane with high cation selectivity and ion permeability, thus a large output power density of 6.26 W m-2 is achieved. The photoactive porphyrin ligands further lead to an improvement of the power density to 7.74 W m-2 upon light irradiation. This work provides a promising strategy for the design of high-performance osmotic energy harvesting systems.


Subject(s)
Metal-Organic Frameworks , Porphyrins , Ligands , Metal-Organic Frameworks/chemistry , Porosity
5.
ACS Appl Mater Interfaces ; 13(27): 32479-32485, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34191482

ABSTRACT

Biological ion pumps with two separate gates can actively transport ions against the concentration gradient. Developing an artificial nanofluidic device with multiple responsive sites is of great importance to improve its controllability over ion transport to further explore its logic function and mimic the biological process. Here, we propose an electrochemical polymerization method to fabricate electrochemically switchable double-gate nanofluidic devices. The ion transport of the double-gate nanofluidic device can be in situ and reversibly switched among four different states. The logic function of this nanofluidic device is systematically investigated by assuming the gate state as the input and the transmembrane ionic conductance as the output. A biomimetic electrochemical ion pump is then established by alternately applying two different specific logic combinations, realizing an active ion transport under a concentration gradient. This work would inspire further studies to construct complex logical networks and explore bioinspired ion pump systems.


Subject(s)
Biomimetics/instrumentation , Electrochemistry , Lab-On-A-Chip Devices , Logic , Nanotechnology/instrumentation , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...