Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 99: 153934, 2022 May.
Article in English | MEDLINE | ID: mdl-35172258

ABSTRACT

BACKGROUND: Previously, we found that the water extract of Artermisia scoparia Waldst. & Kit suppressed the cytokine production of lipopolysaccharide (LPS)-stimulated macrophages and alleviated carrageenan-induced acute inflammation in mice. Artemisia contains various sesquiterpene lactones and most of them exert immunomodulatory activity. PURPOSE: In the present study, we investigated the immunomodulatory effect of estafiatin (EST), a sesquiterpene lactone derived from A. scoparia, on LPS-induced inflammation in macrophages and mouse sepsis model. STUDY DESIGN AND METHODS: Murine bone marrow-derived macrophages (BMDMs) and THP-1 cells, a human monocytic leukemia cell line, were pretreated with different doses of EST for 2 h, followed by LPS treatment. The gene and protein expression of pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) were measured by quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis. The activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) was also evaluated at the level of phosphorylation. The effect of EST on inflammatory cytokine production, lung histopathology, and survival rate was assessed in an LPS-induced mice model of septic shock. The effect of EST on the production of cytokines in LPS-stimulated peritoneal macrophages was evaluated by in vitro and ex vivo experiments and protective effect of EST on cecal ligation and puncture (CLP) mice was also assessed. RESULTS: The LPS-induced expression of IL-6, TNF-α, and iNOS was suppressed at the mRNA and protein levels in BMDMs and THP-1 cells, respectively, by pretreatment with EST. The half-maximal inhibitory concentration (IC50) of EST on IL-6 and TNF-α production were determined as 3.2 µM and 3.1 µM in BMDMs, 3 µM and 3.4 µM in THP1 cells, respectively. In addition, pretreatment with EST significantly reduced the LPS-induced phosphorylation p65, p38, JNK, and ERK in both cell types. In the LPS-induced mice model of septic shock, serum levels of IL-6, TNF-α, IL-1ß, CXCL1, and CXCL2 were lower in EST-treated mice than in the control animals. Histopathology analysis revealed that EST treatment ameliorated LPS-induced lung damage. Moreover, while 1 of 7 control mice given lethal dose of LPS survived, 3 of 7 EST-treated (1.25 mg/kg) mice and 5 of 7 EST-treated (2.5 mg/kg) mice were survived. Pretreatment of EST dose-dependently suppressed the LPS-induced production of IL-6, TNF-α and CXCL1 in peritoneal macrophages. In CLP-induced mice sepsis model, while all 6 control mice was dead at 48 h, 1 of 6 EST-treated (1.25 mg/kg) mice and 3 of 6 EST-treated (2.5 mg/kg) mice survived for 96 h. CONCLUSION: These results demonstrated that EST exerts anti-inflammatory effects on LPS-stimulated macrophages and protects mice from sepsis. Our study suggests that EST could be developed as a new therapeutic agent for sepsis and various inflammatory diseases.

2.
Oxid Med Cell Longev ; 2016: 2761463, 2016.
Article in English | MEDLINE | ID: mdl-27242917

ABSTRACT

Background. Uncontrolled melanogenesis and wrinkle formation are an indication of photoaging. Our previous studies demonstrated that (Z)-5-(2,4-dihydroxybenzylidene)thiazolidine-2,4-dione (MHY498) inhibited tyrosinase activity and melanogenesis in vitro. Objective. To examine in vivo effects of MHY498 as an antiaging compound on UVB-induced melanogenesis and wrinkle formation, we topically applied MHY498 on dorsal skin of HRM-2 hairless mice. Methods. Using histological analysis, we evaluated effects of MHY498 on melanogenesis and wrinkle formation after UVB exposure. In addition, related molecular signaling pathways were examined using western blotting, fluorometric assay, and enzyme-linked immunosorbent assay. Results. MHY498 suppressed UVB-induced melanogenesis by inhibiting phosphorylation of CREB and translocation of MITF protein into the nucleus, which are key factors for tyrosinase expression. Consistently, tyrosinase protein levels were notably reduced in the dorsal skin of the hairless mice by MHY498 treatment. Furthermore, MHY498 inhibited UVB-induced wrinkle formation and collagen fiber destruction by increasing type 1 procollagen concentration and decreasing protein expression levels of MMPs, which play an essential role in collagen fiber degradation. As a mechanism, MHY498 notably ameliorated UVB-induced oxidative stress and NF-κB activation in the dermal skin of the hairless mice. Conclusion. Our study suggests that MHY498 can be used as a therapeutic or cosmetic agent for preventing uncontrolled melanogenesis and wrinkle formation.


Subject(s)
Melanins/metabolism , Oxidative Stress/drug effects , Skin Aging/drug effects , Skin/drug effects , Thiazolidinediones/therapeutic use , Animals , Male , Mice , Mice, Hairless , Signal Transduction , Thiazolidinediones/administration & dosage , Ultraviolet Rays
3.
J Nat Prod ; 78(8): 2110-5, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26280594

ABSTRACT

This study investigated the agonistic activity of magnesium lithospermate B (1), isolated from Salvia miltiorrhiza, on peroxisome proliferator-activated receptor (PPARß/δ) and the expressions of collagen genes (COL1A1 and COL3A1) and transforming growth factor-ß1 (TGF-ß1) in models of skin aging. The action of compound 1 as a PPARß/δ agonist was determined by reporter gene assay, immunostaining, and Western blotting. To determine the antiaging effects of compound 1 on skin, aged Sprague-Dawley rat skin and ultraviolet B (UVB)-irradiated human skin fibroblasts were used. The results show that 1 presented a marked enhancement of both nuclear protein levels and activity of PPARß/δ in fibroblasts. In addition, 1 prevented downregulation of PPARß/δ activity in aged rat skin and UVB-induced fibroblasts. Furthermore, 1 increased the expressions of COL1A1, COL3A1, and TGF-ß1 in vivo and in a cell culture system. Therefore, the present study shows that compound 1 prevents collagen degradation in aged rat skin and UVB-exposed fibroblasts through PPARß/δ activation. The therapeutic and cosmetic applications of compound 1 need further investigation.


Subject(s)
Collagen/metabolism , PPAR delta/metabolism , PPAR-beta/metabolism , Salvia miltiorrhiza/chemistry , Skin/drug effects , Aged , Animals , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Fibroblasts/drug effects , Humans , Magnesium/metabolism , Male , Molecular Structure , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Transcriptional Activation , Up-Regulation
4.
Appl Biochem Biotechnol ; 162(6): 1585-98, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20467833

ABSTRACT

Superoxide dismutase (SOD) catalyzes the dismutation of the biologically toxic superoxide anion into oxygen and hydrogen peroxide and is deployed by the immune system to kill invading microorganisms. Extracellular SOD (EC-SOD) is a copper- and zinc-containing glycoprotein found predominantly in the soluble extracellular compartment that consists of approximately 30-kDa subunits. Here, we purified recombinant EC-SOD3 (rEC-SOD) from Escherichia coli BL21(DE3) expressing a pET-SOD3-1 construct. Cells were cultured by high-density fed-batch fermentation to a final OD(600) of 51.8, yielding a final dry cell weight of 17.6 g/L. rEC-SOD, which was expressed as an inclusion body, comprised 48.7% of total protein. rEC-SOD was refolded by a simple dilution refolding method and purified by cation-exchange and reverse-phase chromatography. The highly purified rEC-SOD thus obtained was a mixture of monomers and dimers, both of which were active. The molecular weights of monomeric and dimeric rEC-SOD were 25,255 and 50,514 Da, respectively. The purified rEC-SOD had 4.3 EU/mg of endotoxin and the solubility of rEC-SOD was more than 80% between pH 7 and 10. In 2 L of fed-batch fermentation, 60 mg of EC-SOD (99.9% purity) could be produced and total activity was 330.24 U. The process established in this report, involving high-cell-density fermentation, simple dilution refolding, and purification with ion-exchange and reverse-phase chromatography, represents a commercially viable process for producing rEC-SOD.


Subject(s)
Escherichia coli Proteins/isolation & purification , Escherichia coli/enzymology , Extracellular Space/enzymology , Gene Expression , Industrial Microbiology/methods , Superoxide Dismutase/isolation & purification , Bioreactors/microbiology , Chromatography , Enzyme Stability , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Extracellular Space/chemistry , Extracellular Space/genetics , Extracellular Space/metabolism , Fermentation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
5.
Biochem Biophys Res Commun ; 343(1): 34-42, 2006 Apr 28.
Article in English | MEDLINE | ID: mdl-16527250

ABSTRACT

Calumenin is a multiple EF-hand Ca2+-binding protein located in endo/sarcoplasmic reticulum of mammalian tissues. In the present study, we cloned two rabbit calumenin isoforms (rabbit calumenin-1 and -2, GenBank Accession Nos. SY225335 and AY225336, respectively) by RT-PCR. Both isoforms contain a 19 aa N-terminal signal sequence, 6 EF-hand domains, and a C-terminal ER/SR retrieval signal, HDEF. Both calumenin isoforms exist in rabbit cardiac and skeletal muscles, but calumenin-2 is the main isoform in skeletal muscle. Presence of calumenin in rabbit sarcoplasmic reticulum (SR) was identified by Western blot analysis. GST-pull down and co-immunoprecipitation experiments showed that ryanodine receptor 1 (RyR1) interacted with calumenin-2 in millimolar Ca2+ concentration range. Experiments of gradual EF-hand deletions suggest that the second EF-hand domain is essential for calumenin binding to RyR1. Adenovirus-mediated overexpression of calumenin-2 in C2C12 myotubes led to increased caffeine-induced Ca2+ release, but decreased depolarization-induced Ca2+ release. Taken together, we propose that calumenin-2 in the SR lumen can directly regulate the RyR1 activity in Ca2+-dependent manner.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Amino Acid Sequence , Animals , Calcium/pharmacology , Calcium-Binding Proteins/analysis , Calcium-Binding Proteins/genetics , Cells, Cultured , Cloning, Molecular , EF Hand Motifs , Immunoprecipitation , Molecular Sequence Data , Muscle, Skeletal/chemistry , Protein Interaction Mapping , Protein Isoforms/analysis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Rabbits , Ryanodine Receptor Calcium Release Channel/drug effects , Sarcoplasmic Reticulum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...