Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(3): e2213837120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36626552

ABSTRACT

Implants are widely used in medical applications and yet macrophage-mediated foreign body reactions caused by implants severely impact their therapeutic effects. Although the extensive use of multiple surface modifications has been introduced to provide some mitigation of fibrosis, little is known about how macrophages recognize the stiffness of the implant and thus influence cell behaviors. Here, we demonstrated that macrophage stiffness sensing leads to differential inflammatory activation, resulting in different degrees of fibrosis. The potential mechanism for macrophage stiffness sensing in the early adhesion stages tends to involve cell membrane deformations on substrates with different stiffnesses. Combining theory and experiments, we show that macrophages exert traction stress on the substrate through adhesion and altered membrane curvature, leading to the uneven distribution of the curvature-sensing protein Baiap2, resulting in cytoskeleton remodeling and inflammation inhibition. This study introduces a physical model feedback mechanism for early cellular stiffness sensing based on cell membrane deformation, offering perspectives for future material design and targeted therapies.


Subject(s)
Foreign-Body Reaction , Macrophages , Humans , Macrophages/metabolism , Foreign-Body Reaction/metabolism , Foreign-Body Reaction/pathology , Inflammation/metabolism , Cell Membrane , Fibrosis
2.
Adv Healthc Mater ; 11(13): e2200382, 2022 07.
Article in English | MEDLINE | ID: mdl-35543500

ABSTRACT

The entry of implants triggers the secretion of damage associated molecular patterns (DAMPs) that recruit dendritic cells (DCs) and results in subsequent foreign body reaction (FBR). Though several studies have illustrated that the surface accessible area (SAA) of implants plays a key role in the process of DAMPs release and absorption, the effect of SAA on the immune reaction still remains unknown. Here, a series of TiO2 plates with different SAA is fabricated to investigate the relationship between SAA and FBR. Compared with larger SAA surface, the aggregation of DC is significantly inhibited by lower SAA surface. Total internal reflection microscopy (TIRFM) and molecular dynamic (MD) simulation show that although high mobility group box 1 (HMGB1) is adsorbed more on plates with lower SAA, the exposure ratio of cysteine (CYS) residue in HMGB1 is significantly decreased in lower SAA group. The lower exposure of CYS reduces the activation of Toll-like receptors 4 (TLR4), which down-regulates the expression of myeloid differentiation factor (Myd88)-TNF receptor associated factor 6 (TRAF6) to inhibit nuclear factor kappa B (NF-κB) signaling. Generally, this study reveals the mechanism of how SAA, a nanoscale property, affects FBR from perspective of DAMPs, and provides a new direction for designing better biocompatible implants.


Subject(s)
HMGB1 Protein , Foreign-Body Reaction , HMGB1 Protein/metabolism , Humans , NF-kappa B/metabolism , Signal Transduction , Titanium
3.
Adv Healthc Mater ; 11(10): e2101983, 2022 05.
Article in English | MEDLINE | ID: mdl-35104391

ABSTRACT

Mechanistic understanding of fibronectin (FN) adsorption which determines cell adhesion on cell-implant interfaces is significant for improving the osteoconduction and soft-tissue healing of implants. Here, it is shown that the adsorption behavior of FN on the titanium oxide surface (TiO2 ) is highly relative to its Pro-His-Ser-Arg-Asn (PHSRN) peptide. FN lacking PHSRN fails to bind to surfaces, resulting in inhibited cell adhesion and spreading. Molecular dynamics simulation shows higher affinity and greater adsorption energy of PHSRN peptide with TiO2 surface due to the stronger hydrogen bonds formed by the serine and arginine residues with O ion of the substrate. Finally, by increasing O content in TiO2 surfaces through O ion-beam implantation, improving the cell adhesion, cell differentiation, and the subsequent biomineralization on titanium implant is realized. This study reveals the vital role of PHSRN in FN-mediated cell adhesion on implant surfaces, providing a promising new target for further tissue integration and implant success.


Subject(s)
Fibronectins , Titanium , Cell Adhesion , Fibronectins/chemistry , Oxygen , Peptides/chemistry , Surface Properties , Titanium/chemistry , Titanium/pharmacology
4.
Adv Healthc Mater ; 10(20): e2100994, 2021 10.
Article in English | MEDLINE | ID: mdl-34196125

ABSTRACT

Macrophage activation determines the fate of biomaterials implantation. Though researches have shown that fibronectin (FN) is highly involved in integrin-induced macrophage activation on biomaterials, the mechanism of how nanosized structure affects macrophage behavior is still unknown. Here, titanium dioxide nanotube structures with different sizes are fabricated to investigate the effects of nanostructure on macrophage activation. Compared with larger sized nanotubes and smooth surface, 30 nm nanotubes exhibit considerable lesser pro-inflammatory properties on macrophage differentiation. Confocal protein observation and molecular dynamics simulation show that FN displays conformation changes on different nanotubes in a feature of "size-confined," which causes the hiding of Arg-Gly-Asp (RGD) domain on other surfaces. The matching size of nanotube with FN allows the maximum exposure of RGD on 30 nm nanotubes, activating integrin-mediated focal adhesion kinase (FAK)-phosphatidylinositol-3 kinase γ (PI3Kγ) pathway to inhibit nuclear factor kappa B (NF-κB) signaling. In conclusion, this study explains the mechanism of nanostructural-biological signaling transduction in protein and molecular levels, as well as proposes a promising strategy for surface modification to regulate immune responses on bioimplants.


Subject(s)
Fibronectins , Nanostructures , Cell Adhesion , Humans , Inflammation , Macrophages , Titanium
5.
Inorg Chem ; 60(10): 7051-7061, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33891813

ABSTRACT

Solid-state structures find a self-assembled tetrameric nickel cage with carboxylate linkages, [Ni(N2S'O)I(CH3CN)]4 ([Ni-I]40), resulting from sulfur acetylation by sodium iodoacetate of an [NiN2S]22+ dimer in acetonitrile. Various synthetic routes to the tetramer, best described from XRD as a molecular square, were discovered to generate the hexacoordinate nickel units ligated by N2Sthioether, iodide, and two carboxylate oxygens, one of which is the bridge from the adjacent nickel unit in [Ni-I]40. Removal of the four iodides by silver ion precipitation yields an analogous species but with an additional vacant coordination site, [Ni-Solv]+, a cation but with coordinated solvent molecules. This also recrystallizes as the tetramer [Ni-Solv]44+. In solution, dissociation into the (presumed) monomer occurs, with coordinating solvents occupying the vacant site [Ni(N2S'O)I(solv)]0, ([Ni-I]0). Hydrodynamic radii determined from 1H DOSY NMR data suggest that monomeric units are present as well in CD2Cl2. Evans method magnetism values are consistent with triplet spin states in polar solvents; however, in CD2Cl2 solutions no paramagnetism is evident. The abilities of [Ni-I]40 and [Ni-Solv]44+ to serve as sources of electrocatalysts, or precatalysts, for the hydrogen evolution reaction (HER) were explored. Cyclic voltammetry responses and bulk coulometry with gas chromatographic analysis demonstrated that a stronger acid, trifluoroacetic acid, as a proton source resulted in H2 production from both electroprecatalysts; however, electrocatalysis developed primarily from uncharacterized deposits on the electrode. With acetic acid as a proton source, the major contribution to the HER is from homogeneous electrocatalysis. Overpotentials of 490 mV were obtained for both the solution-phase [Ni-I]0 and [Ni-Solv]+. While the electrocatalyst derived from [Ni-Solv]+ has a substantially higher TOF (102 s-1) than [Ni-I]0 (19 s-1), it has a shorter catalytically active lifespan (4 h) in comparison to [Ni-I]0 (>18 h).

6.
RSC Adv ; 9(18): 10425-10436, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-35520932

ABSTRACT

In this work, a novel Fe-modified coconut shell biochar (Fe-CSB) was synthesized and utilized to remove phosphate from aqueous solution. Characterization results confirmed that the iron in the Fe(iii)-impregnated CSB existed mainly in the amorphous phase, as ferrihydrite and amorphous hydroxide, which substantially enhanced the phosphate adsorption. Batch experiments indicated that phosphate adsorption on the Fe-CSB was highly dependent on the pH, the humic acid, and temperature, while it was less affected by the nitrate. Phosphate adsorption by the CSB and Fe-CSB could be well described by the pseudo n-th order and Langmuir-Freundlich models. The fitting of the experimental data with the intra-particle diffusion model revealed that surface adsorption and inner-sphere diffusion were involved in the phosphate adsorption process, and that the latter was the rate-controlling step. Batch adsorption experiments and post-adsorption characterization results revealed that the phosphate adsorption by Fe-CSB was primarily governed by four mechanisms: ligand exchange, electrostatic attraction, chemical precipitation, and inner-sphere complexation. This work demonstrated that the modified Fe-CSB is an environmentally friendly and cost-effective bioretention medium and could open up new pathways for the removal of phosphorus from stormwater, as well as solve the problem of waste biomass pollution.

7.
ACS Appl Mater Interfaces ; 11(1): 300-310, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30520301

ABSTRACT

Abuse of antibiotics and their residues in the environment results in the emergence and prevalence of drug-resistant bacteria and leads to serious health problems. Herein, a photon-controlled antibacterial platform that can efficiently kill drug-resistant bacteria and avoid the generation of new bacterial resistance was designed by encapsulating black phosphorus quantum dots (BPQDs) and pharmaceuticals inside a thermal-sensitive liposome. The antibacterial platform can release pharmaceuticals in a spatial-, temporal-, and dosage-controlled fashion because the BPQDs can delicately generate heat under near-infrared light stimulation to disrupt the liposome. This user-defined delivery of drug can greatly reduce the antibiotic dosage, thus avoiding the indiscriminate use of antibiotics and preventing the generation of superbugs. Moreover, by coupling the photothermal effect with antibiotics, this antibacterial platform achieved a synergistic photothermal-/pharmaco-therapy with significantly improved antibacterial efficiency toward drug-resistant bacteria. The antibacterial platform was further employed to treat antibiotic-resistant bacteria-caused skin abscess and it displayed excellent antibacterial activity in vivo, promising its potential clinical applications. Additionally, the antibacterial mechanism was further investigated. The developed photon-controlled antibacterial platform can open new possibilities for avoiding bacterial resistance and efficiently killing antibiotic-resistant bacteria, making it valuable in fields ranging from antiinfective therapy to precision medicine.


Subject(s)
Anti-Bacterial Agents , Hyperthermia, Induced , Infrared Rays , Methicillin-Resistant Staphylococcus aureus/growth & development , Phototherapy , Quantum Dots , Staphylococcal Skin Infections , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Liposomes , Mice , Quantum Dots/chemistry , Quantum Dots/therapeutic use , Staphylococcal Skin Infections/metabolism , Staphylococcal Skin Infections/pathology , Staphylococcal Skin Infections/therapy
8.
Adv Mater ; 30(46): e1804023, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30285289

ABSTRACT

Pathogenic bacterial infections and drug resistance make it urgent to develop new antibacterial agents with targeted delivery. Here, a new targeting delivery nanosystem is designed based on the potential interaction between bacterial recognizing receptors on macrophage membranes and distinct pathogen-associated molecular patterns in bacteria. Interestingly, the expression of recognizing receptors on macrophage membranes increases significantly when cultured with specific bacteria. Therefore, by coating pretreated macrophage membrane onto the surface of a gold-silver nanocage (GSNC), the nanosystem targets bacteria more efficiently. Previously, it has been shown that GSNC alone can serve as an effective antibacterial agent owing to its photothermal effect under near-infrared (NIR) laser irradiation. Furthermore, the nanocage can be utilized as a delivery vehicle for antibacterial drugs since the gold-silver nanocage presents a hollow interior and porous wall structure. With significantly improved bacterial adherence, the Sa-M-GSNC nanosystem, developed within this study, is effectively delivered and retained at the infection site both via local or systemic injections; the system also shows greatly prolonged blood circulation time and excellent biocompatibility. The present work described here is the first to utilize bacterial pretreated macrophage membrane receptors in a nanosystem to achieve specific bacterial-targeted delivery, and provides inspiration for future therapy based on this concept.


Subject(s)
Bacterial Infections/drug therapy , Cell Membrane/metabolism , Drug Delivery Systems , Gold/chemistry , Macrophages/metabolism , Metal Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/therapeutic use , Bacterial Adhesion , Humans , Hyperthermia, Induced , Mice , Phototherapy , Silver/chemistry , Staphylococcus aureus
9.
RSC Adv ; 8(16): 8990-8998, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-35539848

ABSTRACT

Recoveries of cobalt and lithium metals from spent lithium-ion batteries are very important for prevention of environmental pollution and alleviation of resource shortage. In this study, a hydrometallurgical route for the recovery of lithium fluoride was proposed. Lithium and cobalt could be first selectively leached into solution using formic acid and hydrogen peroxide. By investigating the effects of leaching temperature, time, stoichiometric ratio, H2O2 concentration and solid-to-liquid ratio, the leaching efficiency of Li and Co could reach 99.90% and 99.96%, respectively. Meanwhile, the evaluation of leaching kinetics and calculation of apparent activation energies revealed that the leaching process fitted chemical control satisfactorily. After further fractional precipitation, a high purity of 99.0% lithium fluoride could be finally obtained, thus achieving the effective recovery of spent material from the lithium-ion battery.

SELECTION OF CITATIONS
SEARCH DETAIL
...