Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 298: 105153, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38438079

ABSTRACT

Sperm cryopreservation decreases motility, probably due to changes in protein phosphorylation. Our objective was to use quantitative phosphoproteomics for systematic comparative analyses of fresh versus frozen-thawed sperm to identify factors causing cryo-injury. Ejaculates were collected (artificial vagina) from six Dorper rams, pooled, extended, and frozen over liquid nitrogen. Overall, 915, 3382, and 6875 phosphorylated proteins, phosphorylated peptides, and phosphorylation sites, respectively, were identified. At least two modified sites were present in 57.94% of the 6875 phosphosites identified, of which AKAP4 protein contained up to 331 modified sites. There were 732 phosphorylated peptides significantly up-regulated and 909 significantly down-regulated in frozen-thawed versus fresh sperm. Moreover, the conserved motif [RxxS] was significantly down-regulated in frozen-thawed sperm. Phosphorylation of sperm-specific proteins, e.g., AKAP3/4, CABYR, FSIP2, GSK3A/B, GPI, and ODF1/2 make them potential biomarkers to assess the quality of frozen-thawed ram sperm. Furthermore, these differentially phosphorylated proteins and modification sites were implicated in cryopreservation-induced changes in sperm energy production, fiber sheath composition, and various biological processes. We concluded that abnormal protein phosphorylation modifications are key regulators of reduced sperm motility. These novel findings implicated specific protein phosphorylation modifications in sperm cryo-injury. SIGNIFICANCE: This study used phosphorylated TMT quantitative proteomics to explore regulation of epigenetic modifications in frozen-thawed ram sperm. This experiment demonstrated that ram sperm freezing affects phosphorylation site modifications of proteins, especially those related to functions such as sperm motility and energy production. Furthermore, it is important to link functions of phosphorylated proteins with changes in sperm quality after freezing and thawing, and to clarify intrinsic reasons for sperm quality changes, which is of great importance for elucidating mechanisms of sperm freezing damage. Based on these protein markers and combined with cryoprotectant design theory, it provides a theoretical basis and data reference to study sperm cryoprotectants.


Subject(s)
Semen Preservation , Sperm Motility , Female , Male , Sheep , Animals , Semen , Cryopreservation , Spermatozoa , Sheep, Domestic , Peptides
2.
Theriogenology ; 204: 8-17, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37030173

ABSTRACT

In ram sperm, metabolites are important components of the plasma membrane, energy metabolism cycle, and precursors for other membrane lipids, and they may have important roles in maintaining plasma membrane integrity, energy metabolism, and regulation of cryotolerance. In this study, the ejaculates from 6 Dorper rams were pooled and sperm were systematically investigated by metabolomics at various steps of cryopreservation (37 °C, fresh [F]; from 37 to 4 °C, cooling [C]; and from 4 to -196 to 37 °C, frozen-thawed [FT]) to identify differential metabolites (DM). There were 310 metabolites identified, of which 86 were considered DMs. Regarding the DMs, there were 23 (0 up and 23 down), 25 (12 up and 13 down), and 38 (7 up and 31 down) identified during cooling (C vs F), freezing (FT vs C), and cryopreservation (FT vs F), respectively. Furthermore, some key polyunsaturated fatty acids (FAs), particularly, linoleic acid (LA), docosahexaenoic acid (DHA), and arachidonic acid (AA) were down-regulated during cooling and cryopreservation. Significant DMs were enriched in several metabolic pathways including biosynthesis of unsaturated FAs, LA metabolism, mammalian target of rapamycin (mTOR), forkhead box transcription factors (FoxO), adenosine monophosphate-activated protein kinase (AMPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K-Akt) signaling pathways, regulation of lipolysis in adipocytes, and FA biosynthesis. This was apparently the first report to compare metabolomics profiles of ram sperm during cryopreservation and provided new knowledge to improve this process.


Subject(s)
Semen Preservation , Semen , Male , Animals , Semen/physiology , Phosphatidylinositol 3-Kinases , Cryopreservation/veterinary , Spermatozoa/physiology , Fatty Acids, Unsaturated , Semen Preservation/veterinary , Sperm Motility/physiology , Mammals
3.
Front Cell Dev Biol ; 9: 625036, 2021.
Article in English | MEDLINE | ID: mdl-34095106

ABSTRACT

The Calcium-Sensing Receptor (CASR) is a G protein-coupled receptor of the C family that reportedly promotes maturation of porcine oocytes. However, its role in cumulus expansion of cumulus-oocyte complexes (COCs) is not well known. This study was conducted to determine the role of CASR and potential mechanisms involved during in vitro maturation (IVM) of porcine COCs. After culture of COCs in follicle-stimulating hormone (FSH)-supplement maturation medium for 24 h, the time of breakdown of the germinal vesicle (GVBD), indicative of initiation of meiotic maturation, resulted in an increased (p < 0.05) CASR mRNA expression level in cumulus cells. Moreover, IVM of COCs in 10 µM of the CASR agonist NPS R-568 promoted (p < 0.05) cumulus expansion but only in FSH-containing medium. Conversely, 20 µM of the CASR inhibitor NPS2390 precluded cumulus expansion. We next tested the effect of the CASR agonist/inhibitor on the expression of cumulus expansion-related genes. The CASR agonist significantly upregulated the expression of hyaluronan acid synthase 2 (HAS2), whereas the CASR inhibitor downregulated the expression of all HAS2, prostaglandin-endoperoxide synthase 2 (PTGS2), and tumor necrosis factor a-induced protein 6 (TNFAIP6). Altogether, these results suggest that CASR activity is involved in FSH-stimulated porcine cumulus expansion.

4.
Mol Reprod Dev ; 85(1): 38-45, 2018 01.
Article in English | MEDLINE | ID: mdl-29205619

ABSTRACT

Intracellular free calcium ([Ca2+ ]i ) is essential for oocyte maturation and early embryonic development. Here, we investigated the role of [Ca2+ ]i in oocytes from cumulus-oocyte complexes (COCs) with respect to maturation and early embryonic development, using the calcium-buffering agent BAPTA-AM (1,2-bis[2-aminophenoxy]ethane-N,N,N',N'-tetraacetic acid tetrakis [acetoxymethyl ester]). COCs were graded based on compactness of the cumulus mass and appearance of the cytoplasm, with Grade 1 indicating higher quality and developmental potential than Grade 3. Results showed that: (i) [Ca2+ ]i in metaphase-II (MII) oocytes from Grade-3 COCs was significantly higher than those from Grade-1 COCs, and was significantly reduced by BAPTA-AM; (ii) nuclear maturation of oocytes from Grade-3 COCs treated with BAPTA-AM was enhanced compared to untreated COCs; (iii) protein abundance of Cyclin B and oocyte-specific Histone 1 (H1FOO) was improved in MII oocytes from Grade-3 COCs treated with BAPTA-AM; (iv) Ca2+ transients were triggered in each group upon fertilization, and the amplitude of [Ca2+ ]i oscillations increased in the Grade-3 group upon treatment with BAPTA-AM, with the magnitude approaching that of the Grade-1 group; and (v) cleavage rates and blastocyst-formation rates were improved in the Grade-3 group treated with BAPTA-AM compared to untreated controls following in vitro fertilization and parthenogenetic activation. Therefore, BAPTA-AM dramatically improved oocyte maturation, oocyte quality, and embryonic development of oocytes from Grade-3 COCs.


Subject(s)
Calcium/metabolism , Egtazic Acid/analogs & derivatives , Embryonic Development/drug effects , Oocytes/cytology , Oogenesis/physiology , Animals , Cattle , Cumulus Cells/cytology , Egtazic Acid/pharmacology , Female , Pregnancy
5.
Biol Reprod ; 93(6): 131, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26490840

ABSTRACT

Gonadotropins and epidermal growth factor (EGF) play crucial roles in promoting oocyte maturation. The regulatory network downstream of these key factors is not well understood. The present study was designed to investigate the role of the calcium-sensing receptor (CASR) in porcine oocyte in vitro maturation. CASR expression was up-regulated in oocytes matured in gonadotropin-containing medium. Cortical distribution of CASR was enhanced with gonadotropins but not EGF. Supplementation of a CASR agonist (NPS R-568) in the gonadotropin (FSH and/or LH)-containing maturation medium significantly enhanced oocyte nuclear maturation. Addition of NPS2390, a CASR antagonist, compromised oocyte nuclear maturation. Furthermore, increased cortical distribution and decreased expression of CASR was observed after the NPS R-568 treatment. Oocytes treated with NPS R-568 had higher concentration of CYCLIN B1, decreased reactive oxygen species, and increased glutathione levels, indicative of advanced cytoplasmic maturation. In contrast, NPS2390 treatment compromised oocyte cytoplasmic maturation. A higher blastocyst formation rate after parthenogenetic activation was observed when oocytes were matured in the presence of the CASR agonist, NPS R-568. MAPK3/1 phosphorylation was increased during in vitro maturation and after NPS R-568 treatment, and decreased following CASR antagonist supplementation. Taken together, our data showed that the CASR is a gonadotropin-regulated factor that promotes porcine oocyte maturation in a MAPK-dependent manner.


Subject(s)
MAP Kinase Signaling System/physiology , Meiosis/physiology , Oocytes/metabolism , Receptors, Calcium-Sensing/metabolism , Animals , Cyclin B1/metabolism , Female , Follicle Stimulating Hormone/pharmacology , Glutathione/metabolism , Luteinizing Hormone/pharmacology , MAP Kinase Signaling System/drug effects , Meiosis/drug effects , Oocytes/drug effects , Phenethylamines/pharmacology , Propylamines/pharmacology , Reactive Oxygen Species/metabolism , Receptors, Calcium-Sensing/agonists , Receptors, Calcium-Sensing/genetics , Swine , Up-Regulation
6.
Cryo Letters ; 36(6): 392-8, 2015.
Article in English | MEDLINE | ID: mdl-26963885

ABSTRACT

BACKGROUND: An easy and user friendly protocol that produces consistent results will facilitate the commercial application of embryo vitrification technology in the field. OBJECTIVE: This study was designed to develop a simple and efficient vitrification, in-straw dilution and direct transfer method for bovine embryos. METHODS: After being vitrified and in-straw thawed, in vivo-derived and in vitro-produced bovine embryos were subjected to in vitro culture or embryo transplantation. RESULTS: There were no significant differences (P > 0.05) in survival rates (100.0% vs. 93.9%) and expansion rates (93.8% vs. 87.5%) between in vivo-derived and in vitro-produced blastocysts after vitrification and in-straw dilution. And there was also no significant difference (P > 0.05) in conception rates (56.5% vs. 58.8%) after ET between cryopreserved and fresh in vivo-derived blastocysts. CONCLUSION: Vitrification using EG-based vitrification solution and in-straw dilution with PBS-based diluent is a simple and efficient method for cryopreservation and direct transfer of bovine embryos.


Subject(s)
Cryopreservation/veterinary , Embryo Transfer/veterinary , Fertilization in Vitro/veterinary , Vitrification , Animals , Blastocyst/ultrastructure , Cattle , Cryopreservation/methods , Embryo Transfer/methods , Fertilization , Fertilization in Vitro/methods
7.
Mol Reprod Dev ; 81(7): 608-18, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24687528

ABSTRACT

The present study was conducted to examine the effects of leukemia inhibitory factor (LIF) on bovine oocyte maturation and early embryo development in vitro. Results showed that LIF supplementation (25 ng/ml) enhanced nuclear maturation of intact cumulus-oocyte complexes (COCs) compared to the vehicle control. Similar results were observed in denuded oocytes, indicating that LIF directly influences oocyte development. LIF-treated oocytes showed a higher cortical-granule-migration rate and increased expression of CD9, a tetraspanin transmembrane protein essential for fertilization. After in vitro fertilization, oocytes receiving LIF supplementation exhibited a higher cleavage rate and yielded a significantly higher number of blastocysts. To further dissect the molecular mechanism underlying this LIF-induced bovine oocyte maturation phenotype, we examined the involvement of two signaling cascades, mitogen-activated protein kinases (MAPK3/1)- and the signal transducer and activator of transcription 3 (STAT3)-dependent pathways. Western blot results revealed that LIF phosphorylated MAPK3/1 and STAT3. Inhibition of MAPK3/1 activation with MEK inhibitor U0126 only partially blocked LIF-induced nuclear maturation, although it attenuated oocyte cytoplasmic maturation. Inhibition of JAK/STAT3 activation with a specific pharmacological inhibitor completely abolished the LIF-response in bovine oocyte. In summary, these data revealed a novel role for LIF in bovine oocyte maturation subsequent embryonic development.


Subject(s)
Blastocyst/metabolism , Leukemia Inhibitory Factor/metabolism , Oocytes/metabolism , Animals , Blastocyst/physiology , Cattle , Female , Janus Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Oocytes/physiology , STAT3 Transcription Factor , Signal Transduction
8.
Mol Reprod Dev ; 81(1): 20-30, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24167106

ABSTRACT

The aim of this study was to determine the effects of trans-10, cis-12 conjugated linoleic acid (t10c12 CLA) supplementation on oocyte maturation and embryo development in pigs. Compared with the control, supplementation of 50 µM t10c12 CLA to in vitro maturation (IVM) medium significantly increased the proportion of oocytes at the metaphase-II (MII) stage and subsequent parthenogenetic embryo development in terms of cleavage rate, blastocyst formation rate, and cell numbers in blastocysts. The t10c12 CLA-treated oocytes resumed meiotic maturation and progressed to the MII stage significantly faster than those of control. The expression of phosphorylated mitogen-activated protein kinase 3/1 (p-MAPK3/1) and cyclooxygenase-2 (COX2) in cumulus oocyte complexes (COCs) at 5, 10, and 22 hr of IVM were significantly increased in the t10c12 CLA-treatment group. The level of p-MAPK3/1 in t10c12 CLA-treated MII oocytes was also higher (P < 0.05) than that of control. Moreover, t10c12 CLA supplementation partially overcame the negative effects of U0126 on cumulus expansion and nuclear maturation, and completely recovered COX2 protein levels in the presence of U0126. Treatment of COCs with NS398 also significantly suppressed cumulus expansion and nuclear maturation, which was overcome by t10c12 CLA. Yet, this simulatory effect of t10c12 CLA was blocked in the presence of both U0126 and NS398. The t10c12 CLA treatment significantly reduced reactive oxygen species level and increased glutathione concentrations in MII oocyte. In conclusion, supplementation of t10c12 CLA during porcine oocyte maturation exerts its beneficial effects on nuclear and cytoplasmic maturation, which contributes to enhancing subsequent embryo development.


Subject(s)
Embryonic Development/drug effects , Enzyme Activation/drug effects , Linoleic Acids, Conjugated/pharmacology , Oocytes/drug effects , Sus scrofa/embryology , Animals , Blastocyst/drug effects , Blastocyst/physiology , Butadienes , Cell Nucleus/drug effects , Cyclooxygenase 2/metabolism , Embryonic Development/physiology , Female , Meiosis/drug effects , Mitogen-Activated Protein Kinase 3/metabolism , Nitriles , Nitrobenzenes , Oocytes/physiology , Parthenogenesis/physiology , Reactive Oxygen Species/metabolism , Sulfonamides
9.
Cryobiology ; 67(1): 95-101, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23742797

ABSTRACT

The present study was designed to evaluate the viability, meiotic competence and subsequent development of porcine oocytes vitrified using the cryotop method at different stages of in vitro maturation (IVM). Cumulus-oocyte complexes (COCs) were cultured in IVM medium supplemented with 1mM dibutyryl cAMP (dbcAMP) for 22 h and then for an additional 22 h without dbcAMP in the medium. Germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), anaphase I/telophase I (AI/TI) and metaphase II (MII) were found to occur predominantly at 0-22, 26, 32, 38 and 44 h of IVM, respectively. Oocytes were exposed to cryoprotectant (CPA) or vitrified after different durations of IVM (0, 22, 26, 32, 38 and 44 h). After CPA exposure and vitrification, surviving oocytes that were treated before completion of the 44 h maturation period were placed back into IVM medium for the remaining maturation period, and matured oocytes were incubated for 2h. CPA treatment did not affect the viability of oocytes matured for 26, 32, 38 or 44 h, but significantly decreased survival rate of oocytes matured for 0 or 22 h. CPA treatment had no effect on the ability of surviving oocytes to develop to the MII stage regardless of the stage during IVM; however, blastocyst formation following PA was severely lower (P<0.05) than that in the control. At 2h post-warming, the survival rates of oocytes vitrified at 26, 32, 38 and 44 h of IVM were similar but were higher (P<0.05) than those of oocytes vitrified at 0 or 22 h of IVM. The MII rates of surviving oocytes vitrified at 0 and 38 h of IVM did not differ from the control and were higher (P<0.05) than those of oocytes vitrified at 22, 26 or 32 h of IVM. After parthenogenetic activation (PA), both cleavage and blastocyst rates of vitrified oocytes matured for 22, 26, 32, 38 and 44 h did not differ, but all were lower (P<0.05) than those matured 0 h. In conclusion, our data indicate that survival, nuclear maturation and subsequent development of porcine oocytes may be affected by their stage of maturation at the time of vitrification; a higher percentage of blastocyst formation can be obtained from GV oocytes vitrified before the onset of maturation.


Subject(s)
Cryopreservation , Embryonic Development , Oocytes , Animals , Bucladesine/pharmacology , Cell Nucleus/physiology , Cell Survival/drug effects , Cells, Cultured , Cryoprotective Agents/pharmacology , Swine , Vitrification
SELECTION OF CITATIONS
SEARCH DETAIL
...