Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Robot ; 8(84): eadh7852, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38019929

ABSTRACT

Octopuses can whip their soft arms with a characteristic "bend propagation" motion to capture prey with sensitive suckers. This relatively simple strategy provides models for robotic grasping, controllable with a small number of inputs, and a highly deformable arm with sensing capabilities. Here, we implemented an electronics-integrated soft octopus arm (E-SOAM) capable of reaching, sensing, grasping, and interacting in a large domain. On the basis of the biological bend propagation of octopuses, E-SOAM uses a bending-elongation propagation model to move, reach, and grasp in a simple but efficient way. E-SOAM's distal part plays the role of a gripper and can process bending, suction, and temperature sensory information under highly deformed working states by integrating a stretchable, liquid-metal-based electronic circuit that can withstand uniaxial stretching of 710% and biaxial stretching of 270% to autonomously perform tasks in a confined environment. By combining this sensorized distal part with a soft arm, the E-SOAM can perform a reaching-grasping-withdrawing motion across a range up to 1.5 times its original arm length, similar to the biological counterpart. Through a wearable finger glove that produces suction sensations, a human can use just one finger to remotely and interactively control the robot's in-plane and out-of-plane reaching and grasping both in air and underwater. E-SOAM's results not only contribute to our understanding of the function of the motion of an octopus arm but also provide design insights into creating stretchable electronics-integrated bioinspired autonomous systems that can interact with humans and their environments.

2.
Nat Commun ; 13(1): 5030, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36028481

ABSTRACT

In this paper, we propose a multimodal flexible sensory interface for interactively teaching soft robots to perform skilled locomotion using bare human hands. First, we develop a flexible bimodal smart skin (FBSS) based on triboelectric nanogenerator and liquid metal sensing that can perform simultaneous tactile and touchless sensing and distinguish these two modes in real time. With the FBSS, soft robots can react on their own to tactile and touchless stimuli. We then propose a distance control method that enabled humans to teach soft robots movements via bare hand-eye coordination. The results showed that participants can effectively teach a self-reacting soft continuum manipulator complex motions in three-dimensional space through a "shifting sensors and teaching" method within just a few minutes. The soft manipulator can repeat the human-taught motions and replay them at different speeds. Finally, we demonstrate that humans can easily teach the soft manipulator to complete specific tasks such as completing a pen-and-paper maze, taking a throat swab, and crossing a barrier to grasp an object. We envision that this user-friendly, non-programmable teaching method based on flexible multimodal sensory interfaces could broadly expand the domains in which humans interact with and utilize soft robots.


Subject(s)
Robotics , Humans , Locomotion , Motion , Touch
3.
Chem Commun (Camb) ; 55(75): 11267-11270, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31475281

ABSTRACT

Herein, we disclose a Cu-mediated domino di-/triarylation reaction of imidazoles to efficiently access polyaryl imidazolium salts in a single step by using two aryls as well as an anion of a diaryliodonium salt. The diarylation shows high atom economy and excellent selectivity with unsymmetrical iodonium salts.

SELECTION OF CITATIONS
SEARCH DETAIL
...