Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Dent Res ; 10(1): e844, 2024 02.
Article in English | MEDLINE | ID: mdl-38345519

ABSTRACT

OBJECTIVES: This study aimed to synthesize and characterize mesoporous zinc oxide nanoparticles (ZnO NPs) and also to evaluate the cytotoxicity of mesoporous ZnO NPs on L929 mouse fibroblast cell lines using 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. MATERIALS AND METHODS: The synthesized mesoporous ZnO NPs were extensively characterized using X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectra (EDAX), Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). The cytotoxicity of mesoporous ZnO NPs was assessed by MTT assay. The study groups for cytotoxicity assay were normal saline, 0.1% calcined mesoporous ZnO NP solution, 1% calcined mesoporous ZnO NP solution, 0.1% noncalcined mesoporous ZnO NP solution, 1% noncalcined mesoporous ZnO NP solution, 0.1% ZnO NP solution, 1% ZnO NP solution, 2% chlorhexidine, and phosphate-buffered saline (PBS). The percentages of mean ± standard deviation of viable cells were analyzed. RESULTS: Characterization of mesoporous ZnO NPs revealed that all the particles were in a more or less spherical shape with a wide particle size distribution of 70-100 nm. TEM image showed the uniformed and aggregated ZnO NPs with a typical size of 10-15 nm. BET analysis showed a mesoporous structure for the prepared mesoporous ZnO NPs. According to the MTT assay, chlorhexidine had the lowest cell viability percentage. Cell viability percentages of 0.1% mesoporous ZnO NP solutions (calcined and noncalcined) were statistically, significantly higher than 0.1% ZnO NP solution (p < .05). Cell viability percentages of 0.1% calcined and noncalcined mesoporous ZnO NP solutions and 0.1% ZnO NP solution were statistically, significantly higher than the 1% solutions (p < .05). CONCLUSION: Mesoporous ZnO NPs exhibited less cytotoxicity against L929 mouse fibroblast cell lines compared to CHX and ZnO NPs, hence are safe to use.


Subject(s)
Nanoparticles , Zinc Oxide , Animals , Mice , Zinc Oxide/chemistry , Zinc Oxide/metabolism , Chlorhexidine , Particle Size , Nanoparticles/chemistry , Fibroblasts/metabolism
2.
RSC Adv ; 11(21): 12845-12859, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-35423810

ABSTRACT

The six-coordinated bis-o-iminosemiquinone complex, NiL2 BIS, in which LBIS is the o-iminosemiquinone 1-electron oxidized form of the tridentate o-aminophenol benzoxazole-based ligand H2LBAP, was synthesized and characterized. The crystal structure of the complex reveals octahedral geometry with a NiN4O2 coordination sphere in which Ni(ii) has been surrounded by two tridentate LBIS ligands. This compound exhibits (S Ni = 1) with both spin and orbital contribution to the magnetic moment and antiferromagnetic coupling between two electrons on two LBIS ligands which results in a triplet spin ground state (S = 1). The electronic transitions and the electrochemical behavior of this open-shell molecule are presented here, based on experimental observations and theoretical calculations. The electrochemical behavior of NiL2 BIS was investigated by cyclic voltammetry and indicates ligand-centered redox processes. Three-component coupling of aldehydes, amines and alkynes (A3-coupling) was studied in the presence of the NiL2 BIS complex, and the previously reported four-coordinated bis-o-iminosemiquinone NiL2 NIS. Furthermore, among these two o-iminobenzosemiquinonato(1-) complexes of Ni(ii) (NiL2 NIS and NiL2 BIS), NiL2 NIS was found to be an efficient catalyst in A3-coupling at 85 °C under solvent-free conditions and can be recovered and reused for several cycles with a small decrease in activity.

3.
Bioorg Med Chem ; 28(12): 115540, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32503691

ABSTRACT

Spired by the chemical structure of Cilostazol, a selective phosphodiesterase 3A (PDE3A) inhibitor, several novel hybrid compounds of nucleobases (uracil, 6-azauracil, 2-thiuracil, adenine, guanine, theophylline and theobromine) and tetrazole were designed and successfully synthesized and their inhibitory effects on PDE3A as well as their cytotoxicity on HeLa and MCF-7 cancerous cell lines were studied. Obtained results show the linear correlation between the inhibitory effect of synthesized compounds and their cytotoxicity. In some cases, the PDE3A inhibitory effects of synthesized compounds are higher than the Cilostazol. Besides, compared to a standard anticancer drug methotrexate, some of the synthesized compounds showed the higher cytotoxicity against the HeLa and MCF-7 cancerous cell lines.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Nucleotides/chemistry , Phosphodiesterase 3 Inhibitors/chemistry , Tetrazoles/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 3/chemistry , Humans , Kinetics , Molecular Docking Simulation , Phosphodiesterase 3 Inhibitors/metabolism , Quinolones/chemistry , Structure-Activity Relationship
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 183: 319-331, 2017 Aug 05.
Article in English | MEDLINE | ID: mdl-28458237

ABSTRACT

A new selective probe based on copper complex of Indigo Carmine (IC-Cu2) for colorimetric, naked-eye, and fluorimetric recognition of mono hydrogen phosphate (MHP) ion in H2O/DMSO (4:1v/v, 1.0mmolL-1 HEPES buffer solution pH7.5) was developed. Detection limit of HPO42- determination, achieved by fluorimetric and 3lorimetric method, are 0.071 and 1.46µmolL-1, respectively. Potential, therefore is clearly available in IC-Cu2 complex to detect HPO42- in micromolar range via dual visible color change and fluorescence response. Present method shows high selectivity toward HPO42- over other phosphate species and other anions and was successfully utilized for analysis of P2O5 content of a fertilizer sample. The results obtained by proposed chemosensor presented good agreement with those obtained the colorimetric reference method. INHIBIT and IMPLICATION logic gates operating at molecular level have been achieved using Cu2+and HPO42- as chemical inputs and UV-Vis absorbance signal as output.

SELECTION OF CITATIONS
SEARCH DETAIL
...