Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Sci ; 2: e22, 2013.
Article in English | MEDLINE | ID: mdl-25191571

ABSTRACT

Dietary strategies for alleviating health complications associated with type 2 diabetes (T2D) are being pursued as alternatives to pharmaceutical interventions. Berries such as bilberries (Vaccinium myrtillus L.) that are rich in polyphenols may influence carbohydrate digestion and absorption and thus postprandial glycaemia. In addition, berries have been reported to alter incretins as well as to have antioxidant and anti-inflammatory properties that may also affect postprandial glycaemia. The present study investigated the acute effect of a standardised bilberry extract on glucose metabolism in T2D. Male volunteers with T2D (n 8; BMI 30 (sd 4) kg/m(2)) controlling their diabetes by diet and lifestyle alone were given a single oral capsule of either 0·47 g standardised bilberry extract (36 % (w/w) anthocyanins) which equates to about 50 g of fresh bilberries or placebo followed by a polysaccharide drink (equivalent to 75 g glucose) in a double-blinded cross-over intervention with a 2-week washout period. The ingestion of the bilberry extract resulted in a significant decrease in the incremental AUC for both glucose (P = 0·003) and insulin (P = 0·03) compared with the placebo. There was no change in the gut (glucagon-like peptide-1, gastric inhibitory polypeptide), pancreatic (glucagon, amylin) or anti-inflammatory (monocyte chemotactic protein-1) peptides. In addition there was no change in the antioxidant (Trolox equivalent antioxidant capacity, ferric-reducing ability of plasma) responses measured between the volunteers receiving the bilberry extract and the placebo. In conclusion the present study demonstrates for the first time that the ingestion of a concentrated bilberry extract reduces postprandial glycaemia and insulin in volunteers with T2D. The most likely mechanism for the lower glycaemic response involves reduced rates of carbohydrate digestion and/or absorption.

2.
Obesity (Silver Spring) ; 20(6): 1158-67, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22286531

ABSTRACT

The objective of this study was to characterize differences in the secretome of human omental compared with subcutaneous adipose tissue using global gene expression profiling. Gene expression was measured using Affymetrix microarrays (Affymetrix, Santa Clara, CA) in subcutaneous and omental adipose tissue in two independent experiments (n = 5 and n = 3 independent subjects; n = 16 arrays in total, 2 for each subject). Predictive bioinformatic algorithms were employed to identify secreted proteins. Microarray analysis identified 22 gene probe sets whose expression was significantly different with a fold change (FC) greater than 5 in expression in both experiments between omental and subcutaneous adipose tissue. Using bioinformatic predictive programs 11 of these 22 probe sets potentially coded for secreted proteins. Pathway network analysis of the secreted proteins showed that three of the proteins are part of a common pathway network. These proteins gremlin 1 (GREM1), pleiotrophin (PTN), and secretory leukocyte peptidase inhibitor (SLPI) are expressed respectively 43×, 23×, and 5× in omental adipose tissue relative to subcutaneous adipose tissue as determined by real-time PCR. The presence of GREM1, PTN, and SLPI protein in human adipose tissue was confirmed by western blotting. All three proteins are expressed in the human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell line. The expression of GREM1, PTN, and SLPI changed with the differentiation of the preadipocytes into mature adipocytes. Gene expression coupled with predictive bioinformatic algorithms have identified several genes coding for secreted proteins which are expressed differently in omental adipose tissue compared to subcutaneous adipose tissue proving a valid alternative approach to help further define the adipocyte secretome.


Subject(s)
Adipocytes/metabolism , Arrhythmias, Cardiac/metabolism , Carrier Proteins/metabolism , Cytokines/metabolism , Gene Expression Profiling , Gigantism/metabolism , Heart Defects, Congenital/metabolism , Intellectual Disability/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Obesity/metabolism , Omentum/metabolism , Secretory Leukocyte Peptidase Inhibitor/metabolism , Subcutaneous Fat/metabolism , Adult , Algorithms , Blotting, Western , Carrier Proteins/genetics , Cell Differentiation , Cells, Cultured , Cytokines/genetics , Female , Genetic Diseases, X-Linked , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Microarray Analysis , Omentum/cytology , Predictive Value of Tests , Real-Time Polymerase Chain Reaction , Secretory Leukocyte Peptidase Inhibitor/genetics , Subcutaneous Fat/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...