Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Reprod Domest Anim ; 58(5): 614-621, 2023 May.
Article in English | MEDLINE | ID: mdl-36779638

ABSTRACT

Oocytes experience detrimental osmotic stress during vitrification and warming procedures because of the osmolality imbalance between the vitrification-warming fluids and the intracellular environment. Cellular osmotic homeostasis can be preserved by glycine, a powerful osmolyte with antioxidant properties. We aimed to examine the influences of supplementing glycine to the vitrification solutions (VS) on the developmental potential of vitrified/warmed immature dromedary camel oocytes following IVM/IVF and in vitro embryo culture (IVC). Cumulus oocyte complexes (COCs) were collected from dromedary camel ovaries and randomly allocated into two groups namely control (oocytes subjected directly to IVM) and vitrified (COCs were vitrified into VS supplemented with 0.0, 0.5, 1.0 or 2.0 mM glycine). For vitrification, COCs were equilibrated for 3 min in 12.5% ethylene glycol; EG plus 12.5% dimethyl sulfoxide; DMS and then they were vitrified for 60 s in VS composed of 25% EG + 25% DMSO using solid surface vitrification (SSV). Warming of vitrified oocytes was conducted in decreasing concentrations of trehalose solution. Following vitrification and warming, the morphologically viable oocytes were subjected to IVM for 36 h. Matured oocytes were then fertilized in vitro by epididymal spermatozoa and cultured for seven days. The results showed that the percentage of viable oocytes assessed by trypan blue stain was significantly higher (p ≤ .05) in the 1.0 mM glycine-supplemented group than 0.0- and 2.0-mM glycine-supplemented ones (90.0 % vs. 80.0% and 76.6%, respectively). However, no significant difference was observed between 0.5 mM glycine and other vitrified groups. Nuclear maturation rates, cleavage (48-h post-insemination; pi) and blastocyst rate (7-days pi) were significantly lower in vitrified groups than control ones (p ≤ .05). Among vitrified groups, these parameters were the highest in the 1.0 mM glycine-supplemented group. Taken together, supplementation of vitrification solutions with 1.0 mM glycine could enhance the developmental potential of vitrified/warmed immature dromedary camel oocytes.


Subject(s)
Camelus , Vitrification , Male , Animals , Glycine/pharmacology , Cryopreservation/veterinary , Cryopreservation/methods , Oocytes , Dimethyl Sulfoxide , Dietary Supplements , Cryoprotective Agents/pharmacology
2.
Animals (Basel) ; 11(2)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672295

ABSTRACT

This study aimed to investigate the effect of L-Carnitine (LC) supplementation during in vitro maturation (IVM) of canine oocytes on nuclear maturation, fertilization status, and preimplantation development. Cumulus-oocyte complexes (COCs) collected from the ovaries of ovariohysterectomized female dogs were matured in vitro for 72 h in a TCM-199 medium supplemented with (0.1, 0.3, 0.6, 1.0, or 2.0 mg/mL) or without (0.0 mg/mL) LC. Matured oocytes were fertilized in vitro with frozen-thawed spermatozoa, and zygotes were cultured in a SOF medium for 7 days. IVM rates were higher (p ≤ 0.05) in 0.3 and 0.6 mg/mL LC supplemented groups than in the control (0.0 mg/mL LC) and other LC groups. Fertilization (18 h postinsemination (pi)) and cleavage (2-16-cell stage at day 3 pi) rates were higher (p ≤ 0.05) in the 0.6 mg/mL LC group than in the control and 0.1, 1.0, and 2 mg/mL LC supplemented groups. Interestingly, 4.5% of fertilized oocytes developed to morula (day 5 pi) in the 0.6 mg/mL LC group, which was higher (p ≤ 0.05) than those developed in the 0.3 mg/mL group (1.0%). No cleaved embryos developed to morula in other groups. In conclusion, LC supplementation at 0.6 mg/mL during IVM of canine oocytes improved their maturation, fertilization, and preimplantation embryo development rates following IVF and in vitro culture (IVC).

3.
Reprod Domest Anim ; 56(1): 103-111, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33145881

ABSTRACT

Melatonin is known to protect sperm against freezing-inflicted damage in different domestic species. The aim of the study was to evaluate the effect of supplementation of semen extender with melatonin on the quality and DNA integrity of cooled and frozen/thawed rabbit spermatozoa. We also investigated whether the addition of melatonin to the semen extender could improve the fertility of rabbit does artificially inseminated with frozen/thawed semen. Semen samples collected from eight rabbit bucks were pooled and then diluted in INRA-82 supplemented either with (0.5, 1.0 or 1.5 mM) or without (0.0 mM) melatonin. Diluted semen was cooled at 5°C for 24 hr. For cryopreservation and based on the first experiment's best result, semen samples were diluted in INRA-82 in the presence or absence of 1.0 mM melatonin and then frozen in 0.25 ml straws. Following cooling or thawing, sperm quality and DNA integrity were evaluated. Furthermore, the fertility of frozen/thawed semen was investigated after artificial insemination. Supplementation of semen extender with 1.0 mM melatonin improved (p < .05) motility, viability, membrane and acrosome integrities in cooled semen compared with other groups. Sperm quality and DNA integrity were higher (p < .05) in frozen/thawed semen diluted in 1.0 mM melatonin-supplemented extender than in the control group. Conception and birth rates were higher in does inseminated with 1.0 mM melatonin treated semen compared with the controls. In conclusion, supplementation of semen extender with 1.0 mM melatonin improved the quality of cooled and frozen/thawed rabbit spermatozoa. Melatonin can preserve DNA integrity and enhance the fertility of frozen/thawed rabbit spermatozoa.


Subject(s)
Cryopreservation/veterinary , Cryoprotective Agents/pharmacology , Melatonin/pharmacology , Acrosome/drug effects , Animals , Cell Survival , Cryopreservation/methods , DNA Damage , Female , Freezing , Insemination, Artificial/veterinary , Male , Rabbits , Semen Preservation/veterinary , Sperm Motility/drug effects , Spermatozoa/drug effects
4.
Mol Hum Reprod ; 25(12): 787-796, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31651026

ABSTRACT

Peroxiredoxins (PRDXs) are antioxidant enzymes proven to control the levels of reactive oxygen species (ROS) and to avoid oxidative damage in the spermatozoon. Previously, we have shown that low amounts of PRDXs are associated with male infertility and that PRDX6 is the primary antioxidant defense in human spermatozoa, maintaining survival and DNA integrity (Gong et al., 2012, Fernandez and O'Flaherty, 2018). Oxidative stress can trigger different pathway cascades in the spermatozoa, including truncated apoptosis. It has been reported that the phosphorylation status of phosphoinositide 3-kinase (PI3K) and its target AKT (protein kinase B) prevent the spermatozoon from entering the truncated apoptotic cascade. Here, we aim to study the regulation of the PI3K/AKT pathway by PRDX6 and assess its role in maintaining sperm viability. Human semen samples were obtained over 1 year from 20 healthy non-smoking volunteers aged 22-30 years. Sperm viability, lipid peroxidation and apoptosis-like changes were determined by flow cytometry while phosphorylation of PI3K and AKT substrates were assessed by immunoblotting using anti-phospho-PI3K and anti-phospho-AKT substrates antibodies. We found that the addition of arachidonic acid and lysophosphatidic acid, products of PRDX6 calcium-independent phospholipase A2 (Ca2+-iPLA2), prevented loss of sperm viability and maintained the phosphorylation of PI3K. Antioxidant compounds such as D-penicillamine partially prevented the oxidative damage on spermatozoa that led to a reduction of their viability. Thus, other pathways can also participate in sperm survival and be regulated by PRDXs. In conclusion, PRDX6 contributes to the regulation of ROS production and the PI3K/AKT pathway for the maintenance of sperm survival.


Subject(s)
Oxidative Stress/physiology , Peroxiredoxin VI/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sperm Motility/physiology , Spermatozoa/metabolism , Adult , Antioxidants/pharmacology , Apoptosis/physiology , Arachidonic Acid/pharmacology , Cell Survival/physiology , Humans , Infertility, Male/physiopathology , Lysophospholipids/pharmacology , Male , Penicillamine/pharmacology , Peroxiredoxin VI/antagonists & inhibitors , Phosphorylation , Reactive Oxygen Species/metabolism , Young Adult
5.
PLoS One ; 13(3): e0194602, 2018.
Article in English | MEDLINE | ID: mdl-29543888

ABSTRACT

Cryopreservation of oocytes would serve as an alternative to overcome the limited availability of dromedary camel oocytes and facilitate improvements in IVP techniques in this species. Our goal was to develop a protocol for the vitrification of camel oocytes at the germinal vesicle (GV) stage using different cryoprotectant combinations: 20% EG and 20% DMSO (VS1), 25% EG plus 25% DMSO (VS2) or 25% EG and 25% glycerol (VS3) and various cryo-carriers; straws or open pulled-straw (OPS) or solid surface vitrification (SSV); and Cryotop. Viable oocytes were cultured in vitro for 30 h. Matured oocytes were fertilized with epididymal spermatozoa and then cultured in vitro in modified KSOMaa medium for 7 days. Survival and nuclear maturation rates were significantly lower (P ≤ 0.05) in oocytes exposed to VS3 (44.8% and 34.0%, respectively) than those exposed to VS1 (68.2% and 48.0%, respectively) and VS2 (79.3% and 56.9%, respectively). Although recovery rates were significantly lower (P ≤ 0.05) in SSV and Cryotop vitrified oocytes (66.9% to 71.1%) than those vitrified by straws with VS1 or VS2 solutions (86.3% to 91.0%), survival rates were higher in the SSV and Cryotop groups (90.7% to 94.8%) than in the straw and OPS groups (68.2% to 86.5%). Among vitrified groups, maturation and fertilization rates were the highest in the Cryotop-VS2 group (51.8% and 39.2%, respectively). These values were comparable to those seen in the controls (59.2% and 44.6%, respectively). Cleavage (22.5% to 27.9%), morula (13.2% to 14.5%), and blastocyst (6.4% to 8.5%) rates were significantly higher (P ≤ 0.05) in SSV and Cryotop groups than in straws. No significant differences were observed in these parameters between the Cryotop and control groups. We report for the first time that dromedary oocytes vitrified at the GV-stage have the ability to be matured, fertilized and subsequently develop in vitro to produce blastocysts at frequencies comparable to those obtained using fresh oocytes.


Subject(s)
Blastocyst/cytology , Camelus , Cleavage Stage, Ovum/physiology , Fertilization in Vitro/veterinary , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes , Vitrification , Animals , Blastocyst/drug effects , Blastocyst/physiology , Camelus/embryology , Cell Survival/drug effects , Cells, Cultured , Cryopreservation/veterinary , Cryoprotective Agents/pharmacology , Cumulus Cells/cytology , Cumulus Cells/drug effects , Female , Fertilization/drug effects , Fertilization in Vitro/methods , In Vitro Oocyte Maturation Techniques/methods , Male , Oogenesis/drug effects , Oogenesis/physiology
6.
Int J Vet Sci Med ; 6(Suppl): S15-S26, 2018.
Article in English | MEDLINE | ID: mdl-30761316

ABSTRACT

Sheep is an important livestock in the world providing meat, milk and wool for human beings. With increasing human population, the worldwide needs of production of sheep have elevated. To meet the needs, the assistant reproductive technology including ovine in vitro embryo production (ovine IVP) is urgently required to enhance the effective production of sheep in the world. To learn the status of ovine IVP, we collected some publications related to ovine IVP through PubMed and analyzed the progress in ovine IVP made in the last five years (2012-2017). We made comparisons of these data and found that the recent advances in ovine IVP has been made slowly comparable to that of ovine IVP two decades ago. Therefore, we suggested two strategies or approaches to tackle the main problems in ovine IVP and expect that the efficiency of ovine IVP could be improved significantly when the approaches would be implemented.

7.
Int J Vet Sci Med ; 6(Suppl): S41-S48, 2018.
Article in English | MEDLINE | ID: mdl-30761320

ABSTRACT

Oocyte cryopreservation is valuable way of preserving the female germ line. Vitrification of immature ovine oocytes decreased the levels of both maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) in metaphase II (MII) oocytes after IVM. Our aims were 1) to evaluate the effects of vitrification of ovine GV-oocytes on spindle assembly, MPF/MAP kinases activities, and preimplantation development following IVM and IVF, 2) to elucidate the impact of caffeine supplementation during IVM on the quality and development of vitrified/warmed ovine GV-oocytes. Cumulus-oocyte complexes (COCs) from mature ewes were divided into vitrified, toxicity and control groups. Oocytes from each group were matured in vitro for 18 h in caffeine free IVM medium and denuded oocytes were incubated in maturation medium supplemented with 10 mM (+) or without (-) caffeine for another 6 h. At 24 h.p.m., oocytes were evaluated for spindle configuration, MPF/MAP kinases activities or fertilized and cultured in vitro for 7 days. Caffeine supplementation did not significantly affect the percentages of oocytes with normal spindle assembly in all the groups. Caffeine supplementation during IVM did not increase the activities of both kinases in vitrified groups. Cleavage and blastocyst development were significantly lower in vitrified groups than in control. Caffeine supplementation during the last 6 h of IVM did not significantly improve the cleavage and blastocyst rates in vitrified group. In conclusion, caffeine treatment during in vitro maturation has no positive impact on the quality and development of vitrified/warmed ovine GV-oocytes after IVM/IVF and embryo culture.

8.
Sci Rep ; 7(1): 17759, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259204

ABSTRACT

Spermatogenesis consists of a series of highly regulated processes that include mitotic proliferation, meiosis and cellular remodeling. Although alterations in gene expression are well known to modulate spermatogenesis, posttranscriptional mechanisms are less well defined. The ubiquitin proteasome system plays a significant role in protein turnover and may be involved in these posttranscriptional mechanisms. We previously identified ubiquitin ligase Huwe1 in the testis and showed that it can ubiquitinate histones. Since modulation of histones is important at many steps in spermatogenesis, we performed a complete characterization of the functions of Huwe1 in this process by examining the effects of its inactivation in the differentiating spermatogonia, spermatocytes and spermatids. Inactivation of Huwe1 in differentiating spermatogonia led to their depletion and formation of fewer pre-leptotene spermatocytes. The cell degeneration was associated with an accumulation of DNA damage response protein γH2AX, impaired downstream signalling and apoptosis. Inactivation of Huwe1 in spermatocytes indicated that Huwe1 is not essential for meiosis and spermiogenesis, but can result in accumulation of γH2AX. Collectively, these results provide a comprehensive survey of the functions of Huwe1 in spermatogenesis and reveal Huwe1's critical role as a modulator of the DNA damage response pathway in the earliest steps of spermatogonial differentiation.


Subject(s)
Cell Differentiation/physiology , Ligases/metabolism , Meiosis/physiology , Spermatogenesis/physiology , Spermatogonia/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Animals , Female , Histones/metabolism , Male , Mice , Mice, Knockout , Proteasome Endopeptidase Complex/metabolism , Spermatids/metabolism , Spermatocytes/metabolism , Spermatogonia/physiology , Testis/metabolism , Testis/physiology
9.
Sci Rep ; 7(1): 12994, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29021631

ABSTRACT

Prdx6 -/- male mice are subfertile, and the deficiency or inactivation of Peroxiredoxins (PRDXs) is associated with human male infertility. We elucidate the impact of the lack of PRDX6 or inhibition of its calcium-independent phospholipase A2 (Ca2+-iPLA2) activity by MJ33 on fertilization competence of mouse spermatozoa. Sperm motility, viability, fertilization and blastocyst rates were lower in Prdx6 -/- spermatozoa than in C57BL/6J wild-type (WT) controls (p ≤ 0.05). MJ33 inhibited the PRDX6 Ca2+-iPLA2 activity and reduced these parameters in WT spermatozoa compared with controls (p ≤ 0.05). Levels of lipid peroxidation and of superoxide anion (O2•─) were higher in Prdx6 -/- than in WT spermatozoa (p ≤ 0.05). MJ33 increased the levels of lipid peroxidation and mitochondrial O2•─ production in treated versus non-treated WT spermatozoa. Acrosome reaction, binding to zona pellucida and fusion with the oolemma were lower in Prdx6 -/- capacitated spermatozoa than WT capacitated controls and lower in WT spermatozoa treated with the PRDX6 inhibitor. In conclusion, the inhibition of the PRDX6 Ca2+-iPLA2 activity promotes an oxidative stress affecting viability, motility, and the ability of mouse spermatozoa to fertilize oocytes. Thus, PRDX6 has a critical role in the protection of the mouse spermatozoon against oxidative stress to assure fertilizing competence.


Subject(s)
Fertilization in Vitro , Peroxiredoxin VI/metabolism , Phospholipase A2 Inhibitors/pharmacology , Phospholipases A2/metabolism , Spermatozoa/metabolism , Acrosome Reaction/drug effects , Animals , Calcium/metabolism , Embryonic Development/drug effects , Female , Glycerophosphates/pharmacology , Humans , Lipid Peroxidation/drug effects , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Peroxiredoxin VI/deficiency , Sperm Capacitation/drug effects , Sperm Motility/drug effects , Sperm-Ovum Interactions/drug effects , Spermatogenesis/drug effects , Spermatozoa/drug effects , Superoxides/metabolism
10.
Cryobiology ; 79: 14-20, 2017 12.
Article in English | MEDLINE | ID: mdl-28986135

ABSTRACT

The aim of the present study was to evaluate the effects of supplementation of semen extender with various non-enzymatic antioxidants on the quality of cooled or cryopreserved Arabian stallion spermatozoa. Semen collected from four pure Arabian stallions was centrifuged at 600g for 15 min. Spermatozoa were then diluted in INRA-82 extender supplemented with bovine serum albumin (BSA; 0, 10, 15 and 20 mg/mL) or trehalose (0, 75, 100 and 150 mM) or zinc sulphate (0, 100, 150 and 200 µM). The diluted semen was then either cooled at 5 °C or cryopreserved in 0.5-ml plastic straws. After cooling or thawing, sperm motility, viability, sperm abnormalities, viability index, and plasma membrane integrity were evaluated. The results showed that supplementation of semen extender with 150 mM trehalose or with 200 µM zinc sulphate significantly (P < 0.05) improved motility, viability, sperm membrane integrity and acrosome status in Arabian stallion spermatozoa after cooling or after freezing and thawing compared with controls (non-supplemented media) or with those supplemented with other concentrations of trehalose or zinc sulphate. Supplementation of semen extender with BSA did not improve sperm motility or cryosurvival of Arabian stallion spermatozoa after cooling or after freezing and thawing. In conclusion, supplementation of semen extender with non-enzymatic antioxidants (trehalose or zinc sulphate) improved the quality of chilled and frozen/thawed Arabian stallion spermatozoa. The most beneficial effects occur when semen diluent was supplemented with 150 mM trehalose or 200 µM zinc sulphate.


Subject(s)
Antioxidants/pharmacology , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Semen Preservation/methods , Sperm Motility/drug effects , Trehalose/pharmacology , Zinc Sulfate/pharmacology , Acrosome/drug effects , Albumins/pharmacology , Animals , Cell Membrane/drug effects , Cell Membrane/physiology , Freezing , Horses , Male , Semen/physiology , Semen Analysis , Spermatozoa/physiology
11.
Cryobiology ; 76: 98-103, 2017 06.
Article in English | MEDLINE | ID: mdl-28412286

ABSTRACT

Oocyte cryopreservation is imperative for assisted reproductive technologies (ART). Although cryopreservation of oocytes at the Metaphase II has been widely used, immature oocytes at the germinal vesicle stage (GV-oocytes) need to be cryopreserved in certain situations such as cancer patients; however, the success rate of embryonic development from the GV-oocytes remains low largely due to the requirement for in vitro maturation (IVM). Our aim was to investigate the effects of glutathione (GSH) supplementation during vitrification and warming of mouse GV-oocytes on the preservation of developmental competence. GV-oocytes within cumulus oocyte complexes (COCs) were collected from C57BL/6J (B6) and (B6.DBA)F1 mouse strains and subjected to vitrification and warming, followed by IVM. The vitrification, warming or IVM medium was supplemented with GSH at 0-4.0 mM. In vitro matured oocytes were then fertilized in vitro and cultured in KSOMaa up to 4 days. The first cleavage and blastocyst development were evaluated morphologically, and their rates were statistically analysed by one-way ANOVA followed by Tukey's multiple comparisons test. The difference was considered significant at P < 0.05. The results showed that GSH supplementation in the IVM medium exhibited no or rather inhibitory effects on the first cleavage or blastocyst development in both mouse strains except that 1.0 mM GSH increased the blastocyst development rate in B6. By contrast, 1 mM GSH supplementation during vitrification and warming increased the blastocyst development rate in both mouse strains, more efficiently in B6 than (B6.DBA)F1. In conclusion, GSH supplementation during vitrification and warming of GV-oocytes protects the oocytes from freezing-inflicted loss of developmental competence.


Subject(s)
Cryoprotective Agents/pharmacology , Glutathione/pharmacology , Oocytes , Vitrification/drug effects , Animals , Cell Survival/drug effects , Cryopreservation/methods , Embryonic Development/drug effects , Female , Fertilization in Vitro/methods , Freezing , In Vitro Oocyte Maturation Techniques/methods , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Pregnancy
12.
Mol Hum Reprod ; 23(2): 106-115, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28025393

ABSTRACT

STUDY QUESTION: Do peroxiredoxins (PRDXs) control reactive oxygen species (ROS) levels during human sperm capacitation? SUMMARY ANSWER: PRDXs are necessary to control the levels of ROS generated during capacitation allowing spermatozoa to achieve fertilizing ability. WHAT IS KNOWN ALREADY: Sperm capacitation is an oxidative event that requires low and controlled amounts of ROS to trigger phosphorylation events. PRDXs are antioxidant enzymes that not only act as scavengers but also control ROS action in somatic cells. Spermatozoa from infertile men have lower levels of PRDXs (particularly of PRDX6), which are thiol-oxidized and therefore inactive. STUDY DESIGN, SIZE, DURATION: Semen samples were obtained from a cohort of 20 healthy nonsmoker volunteers aged 22-30 years old over a period of 1 year. PARTICIPANTS/MATERIALS, SETTINGS, METHODS: Sperm from healthy donors was capacitated with fetal cord serum ultrafiltrate (FCSu) in the absence or presence of thiostrepton (TSP), inhibitor of 2-Cys PRDXs or 1-Hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol lithium (MJ33), inhibitor of calcium independent-phospholipase A2 (Ca2+-iPLA2) activity of PRDX6, added at different times of incubation. Capacitation was also induced by the dibutyryl cAMP+3-isobuty1-1-methylxanthine system. Sperm viability and motility were determined by the hypo-osmotic swelling test and computer-assisted semen analysis system, respectively. Capacitation was determined by the ability of spermatozoa to undergo the acrosome reaction triggered by lysophosphatidylcholine. Percentages of acrosome reaction were obtained using the FITC-conjugated Pisum sativum agglutinin assay. Phosphorylation of tyrosine residues and of protein kinase A (PKA) substrates were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis immunoblotting with specific antibodies. Actin polymerization was determined by phalloidin labeling. MAIN RESULTS AND THE ROLE OF CHANCE: TSP and MJ33 prevented sperm capacitation and its associated actin polymerization in spermatozoa incubated with 10% FCSu (capacitation inducer) compared to non-capacitated controls (P < 0.05) without altering sperm viability. PKA substrates and tyrosine phosphorylations were prevented in FCSu-treated spermatozoa in a differential fashion depending on the type and the time of addition of the inhibitor used compared to non-capacitated controls (P < 0.05). TSP and MJ33 promoted an increase of lipid peroxidation in spermatozoa (P < 0.01) and these levels were higher in those spermatozoa incubated with the inhibitors and FCSu compared to those capacitated spermatozoa incubated without the inhibitors (P < 0.0001). Inhibition of 2-Cys PRDXs by TSP generated an oxidative stress in spermatozoa, affecting their viability compared to controls (P < 0.05). This oxidative stress was prevented by nuclephile D-penicillamine (PEN). MJ33 also promoted an increase of lipid peroxidation and impaired sperm viability compared to non-treated controls (P < 0.05) but its effect was not circumvented by PEN, suggesting that not only peroxidase but also Ca2+-iPLA2 activity of PRDX6 are necessary to guarantee viability in human spermatozoa. LARGE SCALE DATA: Not applicable. LIMITATIONS REASONS FOR CAUTION: We focused on the global effect of PRDXs inhibitors on human sperm capacitation and in two of its associated phosphorylation events. Thus, other phosphorylation events and mechanisms necessary for capacitation may also be affected. WIDER IMPLICATIONS OF THE FINDINGS: PRDXs are the major antioxidant system in ejaculated spermatozoa and are necessary to allow spermatozoon to achieve fertilizing ability (capacitation and acrosome reaction). STUDY FUNDING/COMPETING INTEREST(S): This research was supported by Canadian Institutes of Health Research (MOP 133661) and the Fonds de Recherché en Santé Quebec (FRSQS #22151) to C.O. The authors have nothing to disclose.


Subject(s)
Peroxiredoxins/genetics , Reactive Oxygen Species/metabolism , Sperm Capacitation/genetics , Spermatozoa/enzymology , 1-Methyl-3-isobutylxanthine/pharmacology , Acrosome Reaction/drug effects , Adult , Cell Survival/drug effects , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic CMP/analogs & derivatives , Cyclic CMP/pharmacology , Fetal Blood/chemistry , Gene Expression Regulation , Glycerophosphates/pharmacology , Humans , Lipid Peroxidation/drug effects , Lysophosphatidylcholines/pharmacology , Male , Oxidative Stress , Penicillamine/pharmacology , Peroxiredoxins/antagonists & inhibitors , Peroxiredoxins/metabolism , Phosphorylation/drug effects , Primary Cell Culture , Sperm Capacitation/drug effects , Sperm Motility/drug effects , Spermatozoa/cytology , Spermatozoa/drug effects , Spermatozoa/metabolism , Thiostrepton/pharmacology
13.
Cryobiology ; 74: 86-92, 2017 02.
Article in English | MEDLINE | ID: mdl-27908686

ABSTRACT

The cryopreservation of immature oocytes would generate a readily available, non-seasonal source of female gametes for research and reproduction. In domestic animals, the most promising results on oocyte cryopreservation have been reported in cattle, few studies have been conducted on buffalo. The aim of the present study was to compare the use of different vitrification solutions and various cryodevices on viability and developmental competence of buffalo oocytes vitrified at the germinal vesicle (GV) stage. Cumulus oocyte-complexes (COCs) obtained at slaughterhouse from mature buffalo ovaries were randomly divided into three main groups and vitrified by using either straw or open pulled-straw (OPS) or solid surface vitrification (SSV) in a solution composed of either 20% ethylene glycol (EG) + 20% glycerol (GLY); VS1 or 20% EG + 20% dimethylsulfoxide (DMSO); VS2, respectively. Following vitrification and warming, viable COCs were matured in vitro for 22 h. Some COCs were denuded and stained with 1.0% aceto-orcein to evaluate nuclear maturation, whereas the others were fertilized and cultured in vitro for 7 days to determine the developmental competence. Although the recovery rate (64.9%) was the lowest in the oocytes vitrified by SSV using 20% EG + 20% DMSO as compared to the other groups, the best survival rate of the COCs was achieved in the same treatment (96.7%), which was significantly higher (P < 0.05) than those vitrified using traditional straws (71.8% in VS1 and 73.6% in VS2) or those vitrified using OPS and VS1 (73.9%). Furthermore, in the nuclear maturation test, the highest maturation rate (75.5%) was achieved in SSV vitrified COCs using 20% EG + 20% DMSO (VS2), which was similar to the controls (77.1%). Post IVF and embryo culture, the highest cleavage and blastocyst development rates were obtained in COCs vitrified in 20% EG + 20% DMSO using SSV (47.1% and 24.0%, respectively), which showed no difference from the controls (61.2% and 46.9%, respectively). Our results clearly show that the combination of SSV and 20% EG + 20% DMSO could be used effectively to vitrify GV stage buffalo COCs.


Subject(s)
Cryopreservation/veterinary , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Ethylene Glycol/pharmacology , Glycerol/pharmacology , Oocytes/physiology , Vitrification/drug effects , Animals , Buffaloes , Cattle , Cell Nucleus/physiology , Cryopreservation/methods , Embryonic Development/drug effects , Female , Fertilization in Vitro/methods , Fertilization in Vitro/veterinary , Oocytes/drug effects , Oxazines
14.
Fertil Steril ; 106(7): 1658-1665.e4, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27717551

ABSTRACT

OBJECTIVE: To investigate the effects of brain-derived neurotrophic factor (BDNF) supplementation to freezing and thawing media on frozen-thawed human sperm parameters. DESIGN: Laboratory study. SETTING: University hospital. PATIENT(S): Semen samples from 21 healthy fertile men. INTERVENTION(S): We measured reactive oxygen species (ROS) by flow cytometry using the probes dichlorofluorescin diacetate for intracellular hydrogen peroxide (H2O2) and dihydroethidium for intracellular superoxide anion (O2-•), sperm plasma membrane integrity by flow cytometry, caspase-3 activity using ELISA, and AKT phosphorylation status using Western blot in sperm that was cryopreserved and thawed in media either supplemented with BDNF or without BDNF supplementation (control). MAIN OUTCOME MEASURE(S): Sperm motility, viability, ROS levels, caspase-3 activity and AKT phosphorylation. RESULT(S): The percentage of motile and viable sperm cells was significantly higher in BDNF-supplemented groups as compared with the nonsupplemented (control) group. There was a significant difference in AKT phosphorylation status between BDNF-supplemented groups and the control group. Moreover, the levels of intracellular H2O2 and caspase-3 activity were significantly lower in the sperm cells that were frozen and thawed in media supplemented with BDNF compared with in the control group. CONCLUSION(S): BDNF supplementation to sperm freezing or thawing media has protective effects against oxidative stress and apoptosis in frozen-thawed human spermatozoa and could improve sperm function, probably through the activation of AKT.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Semen Preservation/methods , Spermatozoa/drug effects , Adult , Caspase 3/metabolism , Cell Survival/drug effects , Cytoprotection , Humans , Hydrogen Peroxide/metabolism , Male , Oxidative Stress/drug effects , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Sperm Motility/drug effects , Spermatozoa/metabolism , Spermatozoa/pathology , Superoxides/metabolism , Young Adult
15.
Hum Reprod ; 29(10): 2256-68, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25113843

ABSTRACT

STUDY QUESTION: How does l-carnitine (LC) supplementation during vitrification and in vitro maturation (IVM) of germinal vesicle stage (GV)-oocytes improve the developmental competence of the resultant metaphase II (MII) oocytes? SUMMARY ANSWER: LC supplementation during both vitrification of GV-oocytes and their subsequent IVM improved nuclear maturation as well as meiotic spindle assembly and mitochondrial distribution in MII oocytes. WHAT IS KNOWN ALREADY: Vitrification of GV-oocytes results in a lower success rate of blastocyst development compared with non-vitrified oocytes. LC supplementation during both vitrification and IVM of mouse GV-oocytes significantly improves embryonic development after IVF. STUDY DESIGN, SIZE, DURATION: GV-oocytes were collected from (B6.DBA)F1 and B6 mouse strains and subjected to vitrification and warming with or without 3.72 mM LC supplementation. After IVM with or without LC supplementation, the rate of nuclear maturation and the quality of MII oocytes were evaluated. At least 20 oocytes/group were examined, and each experiment was repeated at least three times. All experiments were conducted during 2013-2014. PARTICIPANTS/MATERIALS, SETTING, METHODS: Extrusion of the first polar body in IVM oocytes was observed as an indication of nuclear maturation. Spindle assembly and chromosomal alignment were examined by immunostaining of α-tubulin and nuclear staining with 4,6-diamidino-2-phenylindole (DAPI). Mitochondrial distribution and oxidative activity were measured by staining with Mitotracker Green Fluorescence Mitochondria (Mitotracker Green FM) and chloromethyltetramethylrosamine (Mitotracker Orange CMTMRos), respectively. ATP levels were determined by using the Bioluminescent Somatic Cell Assay Kit. MAIN RESULTS AND THE ROLE OF CHANCE: LC supplementation during both vitrification and IVM of GV-oocytes significantly increased the proportions of oocytes with normal MII spindles to the levels comparable with those of non-vitrified oocytes in both mouse strains. While vitrification of GV-oocytes lowered the proportions of MII oocytes with peripherally concentrated mitochondrial distribution compared with non-vitrified oocytes, LC supplementation significantly increased the proportion of such oocytes in the (B6.DBA)F1 strain. LC supplementation decreased the proportion of oocytes with mitochondrial aggregates in both vitrified and non-vitrified oocytes in the B6 strain. The oxidative activity of mitochondria was mildly decreased by vitrification and drastically increased by LC supplementation irrespective of vitrification in both mouse strains. No change was found in ATP levels irrespective of vitrification or LC supplementation. Results were considered to be statistically significant at P < 0.05 by either χ(2)- or t-test. LIMITATIONS, REASONS FOR CAUTION: It remains to be tested whether beneficial effect of LC supplementation during vitrification and IVM of GV-oocytes leads to fetal development and birth of healthy offspring after embryo transfer to surrogate females. WIDER IMPLICATIONS OF THE FINDINGS: This protocol has the potential to improve the quality of vitrified human oocytes and embryos during assisted reproduction treatment. STUDY FUNDING/COMPETING INTEREST: Partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and Mitacs Elevate Postdoctoral Fellowship, Canada.


Subject(s)
Carnitine/pharmacology , In Vitro Oocyte Maturation Techniques , Metaphase/drug effects , Mitochondria/drug effects , Spindle Apparatus/drug effects , Vitrification , Adenosine Triphosphate/metabolism , Animals , Cell Culture Techniques , Female , Male , Mice , Mice, Inbred DBA , Mitochondria/ultrastructure , Oocytes/growth & development , Spindle Apparatus/ultrastructure
16.
Theriogenology ; 81(9): 1286-92, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24630529

ABSTRACT

Caffeine supplementation during oocyte IVM has been reported to improve preimplantation embryo development and the quality of in vitro-produced blastocysts in a range of species; but no studies have been done in camels. The present study investigated the effect of caffeine supplementation during dromedary camel oocyte IVM on nuclear maturation rates, IVF events, and subsequent preimplantation development. Cumulus-oocyte complexes obtained at slaughter were matured in vitro in caffeine supplemented medium either for 30 hours (caffeine 30 hours) or in the medium without caffeine supplement for 24 hours and then transferred to freshly prepared IVM medium supplemented with 10 mM caffeine for another 6 hours (caffeine 6 hours). Cumulus-oocyte complexes matured for 30 hours in the medium without caffeine supplement were used as a control. Matured oocytes were fertilized in vitro by epididymal spermatozoa of mature male camels collected from a local slaughterhouse. Eighteen hours after insemination, presumptive zygotes were cultured in modified KSOMaa medium for 7 days. Maturation and fertilization rates were significantly higher in the caffeine 6-hour group compared with the control group (P < 0.05), whereas IVM of oocytes in caffeine-supplemented medium for 30 hours did not affect these parameters (P > 0.05). Interestingly, IVM of oocytes in caffeine supplemented medium for 6 hours significantly (P < 0.05) increased the frequencies of blastocyst development by more than two-fold when compared with control (27.78% vs. 11.76%). In conclusion, culturing dromedary camel oocytes in maturation medium without caffeine for 24 hours and then in the medium supplemented with 10 mM caffeine for 6 hours during 30-hour IVM can significantly improve frequencies of nuclear maturation, fertilization rate, and subsequent preimplantation development.


Subject(s)
Caffeine/pharmacology , Camelus , Fertilization in Vitro/veterinary , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/drug effects , Animals , Blastocyst , Culture Media/chemistry , Female , Fertility , Oocytes/physiology
17.
Biol Reprod ; 88(4): 104, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23446455

ABSTRACT

Oocyte cryopreservation is important for assisted reproductive technologies (ART). Although cryopreservation of metaphase II (MII) oocytes has been successfully used, MII oocytes are vulnerable to the damage inflicted by the freezing procedure. Cryopreservation of germinal vesicle stage oocytes (GV-oocytes) is an alternative choice; however, blastocyst development from GV-oocytes is limited largely due to the need for in vitro maturation (IVM). Herein, we evaluated the effects of l-carnitine (LC) supplementation during vitrification and thawing of mouse GV-oocytes, IVM, and embryo culture on preimplantation development after in vitro fertilization (IVF). We first compared the rate of embryonic development from the oocytes that had been collected at the GV stage from three mouse strains, (B6.DBA)F1, (B6.C3H)F1, and B6, and processed for IVM and IVF, as well as that from the oocytes matured in vivo, i.e. ovulated (IVO). Our results demonstrated that the rate of blastocyst development was the highest in the (B6.DBA)F1 strain and the lowest in the B6 strain. We then supplemented the IVM medium with 0.6 mg/ml LC. The rate of blastocyst development improved in the B6 but not in the (B6.DBA)F1 strain. Vitrification of GV-oocytes in the basic medium alone reduced the rate of blastocyst development in both of those mouse strains. LC supplementation to the IVM medium alone did not change the percentage of blastocyst development. However, LC supplementation to both vitrification and IVM media significantly improved blastocyst development to the levels comparable with those obtained from vitrified/thawed IVO oocytes in both of the (B6.DBA)F1 and B6 strains. We conclude that LC supplementation during vitrification is particularly efficient in improving the preimplantation development from the GV-oocytes that otherwise have lower developmental competence in culture.


Subject(s)
Carnitine/administration & dosage , Cleavage Stage, Ovum/physiology , Cryopreservation/methods , Embryonic Development/drug effects , Fertilization in Vitro , In Vitro Oocyte Maturation Techniques , Oocytes , Vitrification , Animals , Blastocyst , Cells, Cultured , Cleavage Stage, Ovum/drug effects , Female , Fertilization in Vitro/methods , In Vitro Oocyte Maturation Techniques/methods , Male , Mice , Mice, Inbred C57BL , Vitrification/drug effects
18.
Reprod Fertil Dev ; 25(8): 1204-15, 2013.
Article in English | MEDLINE | ID: mdl-23336581

ABSTRACT

The cryopreservation of immature oocytes at the germinal vesicle (GV) stage would create an easily accessible, non-seasonal source of female gametes for research and reproduction. The present study investigated the ability of ovine oocytes vitrified at the GV stage using a cryoloop to be subsequently matured, fertilised and cultured in vitro to blastocyst-stage embryos. Selected cumulus-oocyte complexes obtained from mature ewes at the time of death were randomly divided into vitrified, toxicity and control groups. Following vitrification and warming, viable oocytes were matured in vitro for 24 h. Matured oocytes were either evaluated for nuclear maturation, spindle and chromosome configuration or fertilised and cultured in vitro for 7 days. No significant differences were observed in the frequencies of IVM (oocytes at the MII stage), oocytes with normal spindle and chromatin configuration and fertilised oocytes among the three groups. Cleavage at 24 and 48 h post insemination was significantly decreased (P<0.01) in vitrified oocytes. No significant differences were observed in the proportion of blastocyst development between vitrified and control groups (29.4% v. 45.1%, respectively). No significant differences were observed in total cell numbers, the number of apoptotic nuclei or the proportion of diploid embryos among the three groups. In conclusion, we report for the first time that ovine oocytes vitrified at the GV stage using a cryoloop have the ability to be matured, fertilised and subsequently developed in vitro to produce good-quality blastocyst embryos at frequencies comparable to those obtained using fresh oocytes.


Subject(s)
Blastocyst/cytology , Cryopreservation/veterinary , Ectogenesis , Fertilization in Vitro/veterinary , Oocytes/cytology , Sheep, Domestic/physiology , Vitrification , Animals , Apoptosis , Blastocyst/metabolism , Cell Nucleus/metabolism , Cell Survival , Cleavage Stage, Ovum/cytology , Cleavage Stage, Ovum/metabolism , Cryopreservation/instrumentation , Cumulus Cells/physiology , Embryo Culture Techniques/veterinary , Female , In Vitro Oocyte Maturation Techniques/veterinary , Male , Oocytes/metabolism , Oogenesis , Semen Preservation/veterinary , Spindle Apparatus/metabolism
19.
Cryobiology ; 65(2): 139-44, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22579520

ABSTRACT

Cryopreservation of immature oocytes at germinal vesicle (GV) stage would provide a readily available source of oocytes for use in research and allow experiments to be performed irrespective of seasonality or other constraints. This study was designed to evaluate the recovery, viability, maturation status, fertilization events and subsequent development of ovine oocytes vitrified at GV stage using solid surface vitrification (SSV). Cumulus oocyte complexes (COCs) obtained from mature ewes were randomly divided into three groups (1) SSV (oocytes were vitrified using SSV), (2) EXP (oocytes were exposed to vitrification and warming solutions without vitrification) or (3) Untreated (control). Following vitrification and warming, viable oocytes were matured in vitro for 24h. After that, nuclear maturation was evaluated using orcein staining. Matured oocytes were fertilized and cultured in vitro for 7days. Following SSV, 75.7% 143/189 oocytes were recovered. Of those oocytes recovered 74.8%, 107/143 were morphologically normal (viable). Frequencies of in vitro maturation were significantly (P<0.01) decreased in SSV and EXP groups as compared to control. In vitro fertilization rates were significantly (P<0.01) decreased in SSV (39.3%) group as compared to EXP (56.4%) and control (64.7%) groups. Cleavage at 48h post insemination (pi) and development to the blastocyst stage on day 7 pi were significantly (P<0.001) decreased in SSV oocytes as compared to EXP and control groups. In conclusion, immature ovine oocytes vitrified using SSV as a simple and rapid procedure can survive and subsequently be matured, fertilized and cultured in vitro up to the blastocyst stage, although the frequency of development is low.


Subject(s)
Cryopreservation/veterinary , Fertilization in Vitro/veterinary , Oocytes/growth & development , Sheep/embryology , Vitrification , Animals , Cell Survival , Cryopreservation/methods , Female , Fertilization in Vitro/methods , Male , Meiosis , Oocytes/cytology , Oogenesis , Random Allocation
20.
Theriogenology ; 76(9): 1639-46, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21958643

ABSTRACT

A high potassium concentration in culture media is considered detrimental to in vitro culture of mouse embryos. Here we show that pig zygotic medium (PZM) containing a higher concentration of potassium, and modified to contain 0.2 mM glucose and 0.01 mM EDTA, supported efficient pre- and post-implantation development of mouse zygotes to blastocysts and live pups, respectively. At first, modified PZM (mPZM) was compared with other culture media such as M16, CZB and KSOM-AA for its ability to support development of in vivo mouse zygotes to the blastocyst stage. The proportions of zygotes reaching 2-cell (94-99%) and blastocyst (90-96%) stages in mPZM and other media were not different. However, hatching rates of blastocysts were different (P < 0.05); whereas more than 90% of the blastocysts were hatching in mPZM or KSOM-AA, only 60% of the blastocysts did in M16 or CZB media (P < 0.05). Next we compared post-implantation development of in vitro fertilized zygotes developed to blastocysts in mPZM and KSOM-AA. The proportion of blastocysts developing into live pups was not different between mPZM (49%) and KSOM-AA (44%). Finally, we evaluated whether mPZM could be also used as a fertilization medium. Modified PZM containing 5.56 mM of glucose and 0.4% BSA efficiently supported IVF of mouse gametes. The percent of zygotes cleaving to 2-cell (94-98%) and blastocysts (91-93%) stage was not different from zygotes fertilized in human tubal fluid medium. We concluded that modified pig zygotic medium containing a higher potassium concentration than any other commonly used mouse media supported not only culture of mouse embryos, but also efficient IVF of mouse gametes.


Subject(s)
Culture Media, Conditioned , Embryo Culture Techniques/veterinary , Embryonic Development , Mice/embryology , Animals , Blastocyst , Embryo Transfer/veterinary , Female , Fertilization in Vitro/methods , Fertilization in Vitro/veterinary , Male , Mice, Inbred Strains , Swine , Zygote/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...