Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Oral Maxillofac Implants ; 29(1): 41-50, 2014.
Article in English | MEDLINE | ID: mdl-24451852

ABSTRACT

PURPOSE: To evaluate the neurocompatibility of different types of dental implant surface treatments using the P19 neural cell line. MATERIALS AND METHODS: P19 cells were plated and supplemented with retinoic acid to grow as aggregates for 4 days. Twenty dental implants were selected from four different implant systems with five different surface treatments. The implants were divided into four groups (n=5), placed inside medical rings, and fixed by injection of warm gutta-percha using a thermoplastic injection technique. Implant molds were placed inside graded culture dishes, and culture medium containing P19 neural cells were plated on the dishes for 4 days. After 24 hours, the surfaces of the implant molds were covered with self-curing resin to make a replica of each mold surface. Replicas were assessed under a scanning electron microscope, and the number of cells and the total cells covering the areas were evaluated. Data were analyzed by a post hoc Tukey test. RESULTS: There were significant differences in P19 cell counts between all modified and electropolished surfaces. The highest P19 cell counts were shown on OsseoSpeed and Laser-Lok surfaces. The lowest counts were shown on the Nanotite surface at the collar. OsseoSpeed and Laser-Lok surfaces showed higher counts at the collar than on the body; the opposite was seen for SLActive and Nanotite surfaces. Cell-covered areas on Laser-Lok surfaces showed significantly higher values than the resorbable blasted media (RBM)-treated surfaces, while it was not significantly different from the OsseoSpeed surface of collar regions. SLActive collar regions showed larger cell-covered areas than the SLActive body surfaces, but this was not significant. CONCLUSIONS: All test surface treatments in this study showed better neurocompatibility than control group surfaces. The Laser-Lok, RBM, and OsseoSpeed surfaces were superior to the Nanotite and SLActive surfaces in terms of neurocompatibility.


Subject(s)
Dental Implants , Nerve Regeneration/physiology , Neurons/cytology , Titanium , Cell Count , Cell Culture Techniques/methods , Cell Line , Microscopy, Electron, Scanning , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...