Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Sci Food Agric ; 104(6): 3437-3447, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38111200

ABSTRACT

BACKGROUND: Obesity induces insulin resistance and chronic inflammation, impacting human health. The relationship between obesity, gut microbiota, and regulatory mechanisms has been studied extensively. Dendrobium officinale polysaccharide (DOP), a traditional Chinese herbal medicine, potentially reduces insulin resistance. However, the mechanism through which DOP affects gut microbiota and alleviates obesity-induced insulin resistance in rats requires further investigation. RESULTS: The current study aimed to assess the impact of DOP on gut microbiota and insulin resistance in rats on a high-fat diet. The results revealed that DOP effectively reduced blood lipids, glucose disorders, oxidative stress, and inflammatory infiltration in the liver of obese Sprague Dawley rats. This was achieved by downregulating SOCS3 expression and upregulating insulin receptor substrate-1 (IRS-1) by regulating the JAK/STAT/SOCS3 signaling pathway. Notably, DOP intervention enhanced the abundance of beneficial gut microbiota and reduced harmful microbiota. Correlation analysis demonstrated significant associations among intestinal microbiota, SOCS3-mediated IRS-1 expression, and inflammatory factors. CONCLUSION: Dendrobium officinale polysaccharide regulated the gut microbiota, enhanced IRS-1 expression, and mitigated liver injury and insulin resistance due to a high-fat diet. These findings depict the potential anti-insulin resistance properties of DOP and offer further evidence for addressing obesity and its complications. © 2023 Society of Chemical Industry.


Subject(s)
Dendrobium , Gastrointestinal Microbiome , Insulin Resistance , Rats , Humans , Animals , Dendrobium/chemistry , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Rats, Sprague-Dawley , Polysaccharides/chemistry , Signal Transduction , Obesity/drug therapy , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism
2.
Front Mol Biosci ; 9: 1101980, 2022.
Article in English | MEDLINE | ID: mdl-36579186

ABSTRACT

[This corrects the article DOI: 10.3389/fmolb.2022.931946.].

3.
Front Mol Biosci ; 9: 931946, 2022.
Article in English | MEDLINE | ID: mdl-36052171

ABSTRACT

Sustainability issues arise when using fish oil and vegetable oils in fish feed production for aquaculture purposes. Microbial production of single cell oil is a potential alternative as a lipid ingredient in the production of fish feed. In this study, we replaced the vegetable oils with the oleaginous yeast R. toruloides biomass in the diet of Arctic char (S. alpinus) and investigated the effects on health and composition. Measurement of fish growth parameters showed a higher liver weight and hepatosomatic index in the experimental group of fish fed partly with yeast biomass compared to a control group fed a diet with vegetable oils. No significant differences in the lipid content of muscle and liver tissues were found. The fatty acid profiles in the muscle of both fish groups were similar while the experimental fish group had a higher amount of monounsaturated fatty acids in the liver. Histology of livers showed no significant difference in the number of lipid droplets. The size of hepatic lipid droplets seemed to be related to liver fat content. Quantification of metabolites in the liver revealed no differences between the fish groups while plasma metabolites involved in energy pathways such as alanine, 3-hydroxybutyrate, creatinine, serine, betaine, and choline were significantly higher in the experimental fish group.

4.
Int J Cancer ; 151(12): 2115-2127, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35866293

ABSTRACT

Prostate cancer (PCa) is the most common cancer form in males in many European and American countries, but there are still open questions regarding its etiology. Untargeted metabolomics can produce an unbiased global metabolic profile, with the opportunity for uncovering new plasma metabolites prospectively associated with risk of PCa, providing insights into disease etiology. We conducted a prospective untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis using prediagnostic fasting plasma samples from 752 PCa case-control pairs nested within the Northern Sweden Health and Disease Study (NSHDS). The pairs were matched by age, BMI, and sample storage time. Discriminating features were identified by a combination of orthogonal projection to latent structures-effect projections (OPLS-EP) and Wilcoxon signed-rank tests. Their prospective associations with PCa risk were investigated by conditional logistic regression. Subgroup analyses based on stratification by disease aggressiveness and baseline age were also conducted. Various free fatty acids and phospholipids were positively associated with overall risk of PCa and in various stratification subgroups. Aromatic amino acids were positively associated with overall risk of PCa. Uric acid was positively, and glucose negatively, associated with risk of PCa in the older subgroup. This is the largest untargeted LC-MS based metabolomics study to date on plasma metabolites prospectively associated with risk of developing PCa. Different subgroups of disease aggressiveness and baseline age showed different associations with metabolites. The findings suggest that shifts in plasma concentrations of metabolites in lipid, aromatic amino acid, and glucose metabolism are associated with risk of developing PCa during the following two decades.


Subject(s)
Fatty Acids, Nonesterified , Prostatic Neoplasms , Male , Humans , Case-Control Studies , Uric Acid , Sweden/epidemiology , Metabolomics/methods , Mass Spectrometry , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/epidemiology , Amino Acids, Aromatic , Glucose
5.
Metabolism ; 125: 154913, 2021 12.
Article in English | MEDLINE | ID: mdl-34653509

ABSTRACT

BACKGROUND: The protective role of mildly elevated bilirubin against CVD and diabetes mellitus type 2 (DMT2) is associated with a favorable lipid phenotype. As the mechanistic understanding of this protection in humans remains elusive, we aimed to assess the metabolomics profile of mildly hyperbilirubinemic (Gilbert's syndrome; GS) individuals especially targeting lipid catabolism. METHODS AND RESULTS: Using NMR serum metabolomics of 56 GS individuals and 56 age and gender-matched healthy controls, GS individuals demonstrated significantly greater concentrations of acetylcarnitine (+20%, p < 0.001) and the ketone bodies, 3-hydroxybutyric acid (+132%, p < 0.001), acetoacetic acid (+95%, p < 0.001) and acetone (+46%, p < 0.001). Metabolites associated with an increased mitochondrial lipid metabolism such as citrate (+15%, p < 0.001), anaplerotic amino acid intermediates and creatinine were significantly greater and creatine significantly reduced in GS individuals. Stimulators of lipid catabolism including AMPK (+59%, p < 0.001), pPPARα (+24%, p < 0.001) and T3 (+9%, p = 0.009) supported the metabolomics data while concomitantly blood glucose and insulin (-33%, p = 0.002) levels were significantly reduced. We further showed that the increased lipid catabolism partially mediates the favorable lipid phenotype (lower triglycerides) of GS individuals. Increased trimethylamine (+35%, p < 0.001) indicated changes in trimethylamine metabolism, an emerging predictor of metabolic health. CONCLUSION: We showed an enhanced lipid catabolism in mildly hyperbilirubinemic individuals, novel evidence as to why these individuals are leaner and protected against chronic metabolic diseases emphasizing bilirubin to be a promising future target in obese and dyslipidemia patients.


Subject(s)
Bilirubin/blood , Gilbert Disease/blood , Lipid Metabolism/physiology , Metabolome/physiology , Adult , Female , Humans , Male , Metabolomics , Middle Aged , Young Adult
6.
Psychosom Med ; 83(7): 693-699, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34267089

ABSTRACT

OBJECTIVE: Short-chain fatty acids (SCFAs) are produced by the gut microbiota and may reflect health. Gut symptoms are common in individuals with depressive disorders, and recent data indicate relationships between gut microbiota and psychiatric health. We aimed to investigate potential associations between SCFAs and self-reported depressive and gut symptoms in young adults. METHODS: Fecal samples from 164 individuals (125 were patients with psychiatric disorders: mean [standard deviation] age = 21.9 [2.6] years, 14% men; 39 nonpsychiatric controls: age = 28.5 [9.5] years, 38% men) were analyzed for the SCFA acetate, butyrate, and propionate by nuclear magnetic resonance spectroscopy. We then compared SCFA ratios with dimensional measures of self-reported depressive and gut symptoms. RESULTS: Depressive symptoms showed a positive association with acetate levels (ρ = 0.235, p = .003) and negative associations with both butyrate (ρ = -0.195, p = .014) and propionate levels (ρ = -0.201, p = .009) in relation to total SCFA levels. Furthermore, symptoms of diarrhea showed positive associations with acetate (ρ = 0.217, p = .010) and negative associations with propionate in relation to total SCFA levels (ρ = 0.229, p = 0-007). Cluster analysis revealed a heterogeneous pattern where shifts in SCFA ratios were observed in individuals with elevated levels of depressive symptoms, elevated levels of gut symptoms, or both. CONCLUSIONS: Shifts in SCFAs are associated with both depressive symptoms and gut symptoms in young adults and may have of relevance for treatment.


Subject(s)
Depression , Gastrointestinal Microbiome , Adult , Fatty Acids, Volatile , Feces , Female , Humans , Male , Young Adult
7.
Anal Chem ; 93(25): 8729-8738, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34128648

ABSTRACT

We have recently presented an Automated Quantification Algorithm (AQuA) and demonstrated its utility for rapid and accurate absolute metabolite quantification in 1H NMR spectra in which positions and line widths of signals were predicted from a constant metabolite spectral library. The AQuA quantifies based on one preselected signal per metabolite and employs library spectra to model interferences from other metabolite signals. However, for some types of spectra, the interspectral deviations of signal positions and line widths can be pronounced; hence, interferences cannot be modeled using a constant spectral library. We here address this issue and present an improved AQuA that handles interspectral deviations. The improved AQuA monitors and characterizes the appearance of specific signals in each spectrum and automatically adjusts the spectral library to model interferences accordingly. The performance of the improved AQuA was tested on a large data set from plasma samples collected using ethylenediaminetetraacetic acid (EDTA) as an anticoagulant (n = 772). These spectra provided a suitable test system for the improved AQuA since EDTA signals (i) vary in intensity, position, and line width between spectra and (ii) interfere with many signals from plasma metabolites targeted for quantification (n = 54). Without the improvement, ca. 20 out of the 54 metabolites would have been overestimated. This included acetylcarnitine and ornithine, which are considered particularly difficult to quantify with 1H NMR in EDTA-containing plasma. Furthermore, the improved AQuA performed rapidly (<10 s for all spectra). We believe that the improved AQuA provides a basis for automated quantification in other data sets where specific signals show interspectral deviations.


Subject(s)
Algorithms , Metabolomics , Edetic Acid , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
8.
PLoS One ; 16(4): e0249322, 2021.
Article in English | MEDLINE | ID: mdl-33886598

ABSTRACT

Feline diabetes mellitus shares many features with type 2 diabetes in people, regarding clinical presentation, physiology, and pathology. A breed predisposition for type 2 diabetes has been identified, with the Burmese breed at a fivefold increased risk of developing the condition compared to other purebred cats. We aimed to characterize the serum metabolome in cats (n = 63) using nuclear magnetic resonance metabolomics, and to compare the metabolite pattern of Burmese cats with that of two cat breeds of medium or low risk of diabetes, the Maine coon (MCO) and Birman cat, respectively. Serum concentrations of adiponectin, insulin and insulin-like growth factor-1 were also measured (n = 94). Burmese cats had higher insulin and lower adiponectin concentrations than MCO cats. Twenty one metabolites were discriminative between breeds using a multivariate statistical approach and 15 remained significant after adjustment for body weight and body condition score. Burmese cats had higher plasma levels of 2-hydroxybutyrate relative to MCO and Birman cats and increased concentrations of 2-oxoisocaproic acid, and tyrosine, and lower concentrations of dimethylglycine relative to MCO cats. The metabolic profile of MCO cats was characterized by high concentrations of arginine, asparagine, methionine, succinic acid and low levels of acetylcarnitine while Birman cats had the highest creatinine and the lowest taurine plasma levels, compared with MCO and Burmese. The pattern of metabolites in Burmese cats is similar to that in people with insulin resistance. In conclusion, the metabolic profile differed between healthy cats of three breeds. Detection of an abnormal metabolome might identify cats at risk of developing diabetes.


Subject(s)
Cat Diseases/metabolism , Diabetes Mellitus, Type 2/veterinary , Metabolome , Animals , Cats , Diabetes Mellitus, Type 2/metabolism , Female , Insulin Resistance , Male , Species Specificity
9.
Metabolomics ; 17(1): 11, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33438144

ABSTRACT

INTRODUCTION: Hyperinsulinaemia and insulin resistance (IR) are strongly associated with obesity and are forerunners of type 2 diabetes. Little is known about metabolic alterations separately associated with obesity, hyperinsulinaemia/IR and impaired glucose tolerance (IGT) in adolescents. OBJECTIVES: To identify metabolic alterations associated with obesity, hyperinsulinaemia/IR and hyperinsulinaemia/IR combined with IGT in obese adolescents. METHODS: 81 adolescents were stratified into four groups based on body mass index (lean vs. obese), insulin responses (normal insulin (NI) vs. high insulin (HI)) and glucose responses (normal glucose tolerance (NGT) vs. IGT) after an oral glucose tolerance test (OGTT). The groups comprised: (1) healthy lean with NI and NGT, (2) obese with NI and NGT, (3) obese with HI and NGT, and (4) obese with HI and IGT. Targeted nuclear magnetic resonance-based metabolomics analysis was performed on fasting and seven post-OGTT plasma samples, followed by univariate and multivariate statistical analyses. RESULTS: Two groups of metabolites were identified: (1) Metabolites associated with insulin response level: adolescents with HI (groups 3-4) had higher concentrations of branched-chain amino acids and tyrosine, and lower concentrations of serine, glycine, myo-inositol and dimethylsulfone, than adolescents with NI (groups 1-2). (2) Metabolites associated with obesity status: obese adolescents (groups 2-4) had higher concentrations of acetylcarnitine, alanine, pyruvate and glutamate, and lower concentrations of acetate, than lean adolescents (group 1). CONCLUSIONS: Obesity is associated with shifts in fat and energy metabolism. Hyperinsulinaemia/IR in obese adolescents is also associated with increased branched-chain and aromatic amino acids.


Subject(s)
Hyperinsulinism/metabolism , Insulin Resistance , Metabolome , Metabolomics , Obesity/metabolism , Adolescent , Biomarkers , Child , Cross-Sectional Studies , Female , Humans , Hyperinsulinism/blood , Hyperinsulinism/epidemiology , Longitudinal Studies , Male , Metabolomics/methods , Obesity/blood , Obesity/epidemiology , Pediatric Obesity/blood , Pediatric Obesity/metabolism , Puberty , Sweden/epidemiology
10.
Int J Cancer ; 148(3): 731-747, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33034050

ABSTRACT

Androgen deprivation therapy (ADT) remains a key approach in the treatment of prostate cancer (PCa). However, PCa inevitably relapses and becomes ADT resistant. Besides androgens, there is evidence that thyroid hormone thyroxine (T4) and its active form 3,5,3'-triiodo-L-thyronine (T3) are involved in the progression of PCa. Epidemiologic evidences show a higher incidence of PCa in men with elevated thyroid hormone levels. The thyroid hormone binding protein µ-Crystallin (CRYM) mediates intracellular thyroid hormone action by sequestering T3 and blocks its binding to cognate receptors (TRα/TRß) in target tissues. We show in our study that low CRYM expression levels in PCa patients are associated with early biochemical recurrence and poor prognosis. Moreover, we found a disease stage-specific expression of CRYM in PCa. CRYM counteracted thyroid and androgen signaling and blocked intracellular choline uptake. CRYM inversely correlated with [18F]fluoromethylcholine (FMC) levels in positron emission tomography/magnetic resonance imaging of PCa patients. Our data suggest CRYM as a novel antagonist of T3- and androgen-mediated signaling in PCa. The role of CRYM could therefore be an essential control mechanism for the prevention of aggressive PCa growth.


Subject(s)
Crystallins/genetics , Crystallins/metabolism , Down-Regulation , Prostatic Neoplasms/pathology , Signal Transduction , Cell Line, Tumor , Choline/administration & dosage , Choline/analogs & derivatives , Cohort Studies , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Metabolomics , Neoplasm Staging , PC-3 Cells , Positron Emission Tomography Computed Tomography , Prognosis , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Thyroid Hormone/genetics , Sequence Analysis, RNA , Tissue Array Analysis , Triiodothyronine/antagonists & inhibitors , Triiodothyronine/metabolism , mu-Crystallins
11.
PLoS One ; 15(8): e0236944, 2020.
Article in English | MEDLINE | ID: mdl-32745090

ABSTRACT

Gut dysbiosis has been implicated in the pathophysiology of a growing number of non-communicable diseases. High through-put sequencing technologies and short chain fatty acid (SCFA) profiling enables surveying of the composition and function of the gut microbiota and provide key insights into host-microbiome interactions. However, a methodological problem with analyzing stool samples is that samples are treated and stored differently prior to submission for analysis potentially influencing the composition of the microbiota and its metabolites. In the present study, we simulated the sample acquisition of a large-scale study, in which stool samples were stored for up to two days in the fridge or at room temperature before being handed over to the hospital. To assess the influence of time and temperature on the microbial community and on SCFA composition in a controlled experimental setting, the stool samples of 10 individuals were exposed to room and fridge temperatures for 24 and 48 hours, respectively, and analyzed using 16S rRNA gene amplicon sequencing, qPCR and nuclear magnetic resonance spectroscopy. To best of our knowledge, this is the first study to investigate the influence of storage time and temperature on the absolute abundance of methanogens, and of Lactobacillus reuteri. The results indicate that values obtained for methanogens, L. reuteri and total bacteria are still representative even after storage for up to 48 hours at RT (20°C) or 4°C. The overall microbial composition and structure appeared to be influenced more by laboratory errors introduced during sample processing than by the actual effects of temperature and time. Although microbial activity was demonstrated by elevated SCFA at both 4°C and RT, SCFAs ratios were more stable over the different conditions and may be considered as long as samples are come from similar storage conditions.


Subject(s)
Feces/chemistry , Feces/microbiology , Specimen Handling/methods , Adult , Bacteria/genetics , Dysbiosis/microbiology , Fatty Acids, Volatile/analysis , Female , Gastrointestinal Microbiome/genetics , Humans , Male , Microbiota , RNA, Ribosomal, 16S/genetics , Temperature , Time Factors
12.
BMC Med ; 18(1): 187, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32698845

ABSTRACT

BACKGROUND: Prostate cancer is the second most frequently diagnosed cancer in men. Metabolomics can potentially provide new insights into the aetiology of prostate cancer by identifying new metabolic risk factors. This study investigated the prospective association between plasma metabolite concentrations and prostate cancer risk, both overall and by stratifying for disease aggressiveness and baseline age. METHODS: In a case-control study nested in the Northern Sweden Health and Disease Study, pre-diagnostic concentrations of 148 plasma metabolites were determined using targeted mass spectrometry- and nuclear magnetic resonance-based metabolomics in 777 prostate cancer cases (follow-up ≥ 5 years) and 777 matched controls. Associations between prostate cancer risk and metabolite concentrations were investigated using conditional logistic regression conditioned on matching factors (body mass index, age and sample storage time). Corrections for multiple testing were performed using false discovery rate (20%) and Bonferroni. Metabolomics analyses generated new hypotheses, which were investigated by leveraging food frequency questionnaires (FFQs) and oral glucose tolerance tests performed at baseline. RESULTS: After correcting for multiple testing, two lysophosphatidylcholines (LPCs) were positively associated with risk of overall prostate cancer (all ages and in older subjects). The strongest association was for LPC C17:0 in older subjects (OR = 2.08; 95% CI 1.45-2.98; p < 0.0001, significant also after the Bonferroni correction). Observed associations with risk of overall prostate cancer in younger subjects were positive for glycine and inverse for pyruvate. For aggressive prostate cancer, there were positive associations with six glycerophospholipids (LPC C17:0, LPC C20:3, LPC C20:4, PC ae C38:3, PC ae C38:4 and PC ae C40:2), while there was an inverse association with acylcarnitine C18:2. Moreover, plasma LPC C17:0 concentrations positively correlated with estimated dietary intake of fatty acid C17:0 from the FFQs. The associations between glycerophospholipids and prostate cancer were stronger in case-controls with normal glucose tolerance. CONCLUSIONS: Several glycerophospholipids were positively associated with risk of overall and aggressive prostate cancer. The strongest association was observed for LPC C17:0. The associations between glycerophospholipids and prostate cancer risk were stronger in case-controls with normal glucose tolerance, suggesting a link between the glucose metabolism status and risk of prostate cancer.


Subject(s)
Mass Spectrometry/methods , Metabolomics/methods , Prostatic Neoplasms/blood , Adult , Case-Control Studies , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , Sweden
13.
PLoS Genet ; 15(12): e1008455, 2019 12.
Article in English | MEDLINE | ID: mdl-31800589

ABSTRACT

SLC18B1 is a sister gene to the vesicular monoamine and acetylcholine transporters, and the only known polyamine transporter, with unknown physiological role. We reveal that Slc18b1 knock out mice has significantly reduced polyamine content in the brain providing the first evidence that Slc18b1 is functionally required for regulating polyamine levels. We found that this mouse has impaired short and long term memory in novel object recognition, radial arm maze and self-administration paradigms. We also show that Slc18b1 KO mice have altered expression of genes involved in Long Term Potentiation, plasticity, calcium signalling and synaptic functions and that expression of components of GABA and glutamate signalling are changed. We further observe a partial resistance to diazepam, manifested as significantly lowered reduction in locomotion after diazepam treatment. We suggest that removal of Slc18b1 leads to reduction of polyamine contents in neurons, resulting in reduced GABA signalling due to long-term reduction in glutamatergic signalling.


Subject(s)
Brain/metabolism , Cation Transport Proteins/genetics , Memory, Long-Term , Memory, Short-Term , Polyamines/metabolism , Animals , Calcium Signaling , Gene Knockout Techniques , Glutamic Acid/metabolism , Maze Learning , Mice , Neuronal Plasticity , gamma-Aminobutyric Acid/metabolism
14.
BMC Vet Res ; 15(1): 96, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30894172

ABSTRACT

BACKGROUND: Obesity in dogs is an increasing problem associated with morbidity, shortened life span and poor life quality. Overweight dogs exhibit postprandial hyperlipidaemia, highlighting the need to identify potential dysregulations in lipid metabolism. This study investigated metabolites related to lipid metabolism (i.e. acylcarnitines and taurine) and phospholipids in a feed-challenge test and aimed to identify metabolic variations in spontaneously overweight dogs. Twenty-eight healthy male Labrador Retriever dogs were included, 12 of which were classified as lean (body condition score (BCS) 4-5 on a 9-point scale) and 16 as overweight (BCS 6-8). After overnight fasting (14-17 h), fasting blood samples were collected and dogs were fed a high-fat meal followed by postprandial blood sample collection hourly for 4 h. Liquid chromatography-time of flight mass spectrometry (LC-TOFMS) was used to identify plasma metabolites and phospholipids. Multivariate models, mixed model repeated measures and linear regression analyses were used for data interpretation. RESULTS: In all dogs, propionylcarnitine, stearoylcarnitine and nine phospholipids increased in response to food intake, while vaccenylcarnitine decreased (P ≤ 0.005 for all). Overall, carnitine and acetylcarnitine signal areas in the feed-challenge test were lower in overweight dogs (P ≤ 0.004). Notably, fasting plasma acetylcarnitine was lower in overweight dogs than in lean dogs (P = 0.001) and it did not change in response to feeding. The latter finding was in contrast to the decreased acetylcarnitine signal area found in lean dogs at one hour postprandially (P < 0.0001). One fasting phosphatidylcholine (PCaa C38:4) was higher in prominently overweight dogs (BCS > 6) than in lean dogs (P < 0.05). CONCLUSIONS: Plasma carnitine status was overall lower in spontaneously overweight dogs than in lean dogs in this cohort of healthy Labrador Retriever dogs, indicating a potential carnitine insufficiency in the overweight group. The acetylcarnitine response in overweight dogs indicated decreased fatty acid oxidation at fasting and metabolic inflexibility to food intake. Further studies on metabolic inflexibility and its potential role in the metabolism of overweight dogs are warranted.


Subject(s)
Dog Diseases/metabolism , Eating , Overweight/veterinary , Animals , Carnitine/analogs & derivatives , Carnitine/blood , Dog Diseases/etiology , Dogs , Eating/physiology , Lipid Metabolism , Male , Overweight/etiology , Overweight/metabolism , Phospholipids/blood
15.
Acta Vet Scand ; 61(1): 10, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30808390

ABSTRACT

BACKGROUND: The prevalence of overweight is increasing in dogs, but the metabolic events related to this condition are still poorly understood. The purpose of the study was to investigate the postprandial response of plasma metabolites using a meal-challenge test and to identify metabolic variations related to spontaneous overweightness in privately owned dogs. RESULTS: Twenty-eight healthy male intact Labrador Retriever dogs were included, 12 of which were classified as lean (body condition score (BCS) 4-5 on a 9-point scale) and 16 as overweight (BCS 6-8). After an overnight fast (14-17 h), blood samples were collected and dogs were thereafter fed a high-fat meal. Postprandial blood samples were collected hourly four times. Plasma metabolites were identified by nuclear magnetic resonance. Postprandial metabolomes differed from the fasting metabolome in multivariate discriminant analysis (PLS-DA: Q2Y = 0.31-0.63, cross-validated ANOVA: P ≤ 0.00014) Eleven metabolites, all amino acids, contributed to the separations. Carnitine was identified as a metabolite related to overweight (stepwise logistic regression analysis P ≤ 0.03) and overweight dogs had overall lower carnitine response (mixed model repeated measures analysis P = 0.005) than lean dogs. Notably, mean fasting carnitine concentration in overweight dogs (9.4 ± 4.2 µM) was close to a proposed reference limit for carnitine insufficiency. CONCLUSIONS: A postprandial amino acid response was detected but no time-dependent variations with regards to body condition groups were found. Lower carnitine concentrations were found in overweight compared to lean dogs. The latter finding could indicate a carnitine insufficiency related to spontaneous adiposity and altered lipid metabolism in overweight dogs in this cohort of otherwise healthy Labrador Retrievers.


Subject(s)
Carnitine/blood , Metabolome/physiology , Overweight/veterinary , Animals , Dogs , Magnetic Resonance Spectroscopy , Male , Metabolomics , Overweight/blood , Postprandial Period
16.
Mol Nutr Food Res ; 63(7): e1800959, 2019 04.
Article in English | MEDLINE | ID: mdl-30636184

ABSTRACT

SCOPE: Ingestion of rye bread leads to lower postprandial plasma insulin concentrations than wheat bread ingestion, but most often not too different glucose profiles. The mechanism behind this discrepancy is still largely unknown. This study investigates whether glucose kinetics may explain the observed discrepancy. METHODS AND RESULTS: Nine healthy men participated in a crossover study, eating 50 g of available carbohydrates as either refined wheat (WB) or traditional wholemeal rye bread (WMR) during d-[6,6-2 H2 ]glucose infusion. Labeled glucose enrichment is measured by an HPLC-TOF-MS method. The calculated rate of glucose appearance (RaE) is significantly lower after ingestion of WMR during the initial 15 min postprandial period. Additionally, the 0-90 min RaE area under the curve (AUC) is significantly lower after ingestion of WMR, as is plasma gastric inhibitory polypeptide (GIP) at 60 and 90 min. Postprandial glycemic responses do not differ between the breads. Postprandial insulin is lower after ingestion of WMR at 45 and 60 min, as is the 0-90 min AUC. CONCLUSION: Ingestion of WMR elicits a lower rate of glucose appearance into the bloodstream compared with WB. This may explain the lower insulin response observed after rye bread ingestion, commonly known as the rye factor.


Subject(s)
Blood Glucose/metabolism , Bread , Insulin/blood , Secale , Triticum , Adolescent , Adult , Blood Glucose/analysis , C-Peptide/blood , Chromatography, High Pressure Liquid , Cross-Over Studies , Gastric Inhibitory Polypeptide/blood , Glucagon/blood , Glucagon-Like Peptide 1/blood , Humans , Male , Mass Spectrometry , Postprandial Period/physiology
17.
Eur J Nutr ; 58(8): 3109-3119, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30392136

ABSTRACT

PURPOSE: Irritable bowel syndrome is a gastrointestinal disorder which can influence human metabolism. It has been demonstrated that probiotics are beneficial in controlling IBS. Thus, the main objective of the present study was to determine metabolic changes in response to diarrhea predominant irritable bowel syndrome (IBS-D) and to investigate the metabolic effects of a synbiotic intervention on serum, urine, and stool samples from IBS-D patients and healthy controls using proton nuclear magnetic resonance (1HNMR). METHODS: A 1HNMR-based metabolomics study was conducted on urine and serum metabolites from 16 healthy and eight IBS-D participants at baseline and after 4 weeks of a synbiotic yogurt intervention. RESULTS: At the baseline, serum acetoacetate, myo-inositol, and sarcosine concentrations were higher and threonine and methionine concentrations were lower in the IBS-D cohort than the control group. Moreover, Indoxyl-sulfate concentration of urine was lower and dimethylamine and taurine were higher in the IBS-D group. After intervention, serum concentration of ketone bodies decreased, choline, phenylalanine, and branched-chain amino acids increased in IBS-D group. Metabolomics analysis indicated a shift in one-carbon metabolism. Thus, the level of serum homocysteine was determined and found to be higher in the IBS-D cohort at baseline, and then decreased after the intervention. CONCLUSION: IBS causes a shift in one-carbon metabolism and these changes can be reversed by a synbiotic intervention. An increase in the number of fecal Lactobacilli and an improvement in the health status of IBS-D patients were also observed in response to intervention.


Subject(s)
Diarrhea/metabolism , Gastrointestinal Microbiome , Irritable Bowel Syndrome/metabolism , Metabolomics/methods , Synbiotics/administration & dosage , Yogurt , Adult , Female , Gastrointestinal Tract/diagnostic imaging , Gastrointestinal Tract/microbiology , Humans , Iran , Irritable Bowel Syndrome/complications , Magnetic Resonance Spectroscopy , Male
18.
J Nutr Sci ; 7: e32, 2018.
Article in English | MEDLINE | ID: mdl-30510697

ABSTRACT

Public health authorities recommend all fertile women to increase their folate intake to 400 µg/d by eating folate-rich foods or by taking a folic acid supplement to protect against neural tube defects. In a previous study it was shown that folate-rich foods improved folate blood status as effectively as folic acid supplementation. The aim of the present study was to investigate, using NMR metabolomics, the effects of an intervention with a synthetic folic acid supplement v. native food folate on the profile of plasma metabolites. Healthy women with normal folate status received, in parallel, 500 µg/d synthetic folic acid from a supplement (n 18), 250 µg/d folate from intervention foods (n 19), or no additional folate (0 µg/d) through a portion of apple juice (n 20). The metabolic profile of plasma was measured using 1H-NMR in fasted blood drawn at baseline and after 12 weeks of intervention. Metabolic differences between the groups at baseline and after intervention were assessed using a univariate statistical approach (P ≤ 0·001, Bonferroni-adjusted significance level). At baseline, the groups showed no significant differences in measured metabolite concentrations. After intervention, eight metabolites, of which six (glycine, choline, betaine, formate, histidine and threonine) are related to one-carbon metabolism, were identified as discriminative metabolites. The present study suggests that different folate forms (synthetic v. natural) may affect related one-carbon metabolites differently.

19.
Front Immunol ; 9: 1487, 2018.
Article in English | MEDLINE | ID: mdl-29988549

ABSTRACT

Mastitis is an inflammatory condition of the mammary tissue and represents a major problem for the dairy industry worldwide. The present study was undertaken to study how experimentally induced acute bovine mastitis affects inflammatory parameters and changes in the metabolome. To this end, we induced experimental mastitis in nine cows by intramammary infusion of 100 µg purified Escherichia coli lipopolysaccharide (LPS) followed by kinetic assessments of cytokine responses (by enzyme-linked immunosorbent assay), changes in the metabolome (assessed by nuclear magnetic resonance), clinical parameters (heat, local pain perception, redness, swelling, rectal temperature, clot formation, and color changes in the milk), and milk somatic cell counts, at several time points post LPS infusion. Intramammary LPS infusion induced clinical signs of mastitis, which started from 2 h post infusion and had returned to normal levels within 24-72 h. Milk changes were seen with a delay compared with the clinical signs and persisted for a longer time. In parallel, induction of IL-6 and TNF-α were seen in milk, and there was also a transient elevation of plasma IL-6 whereas plasma TNF-α was not significantly elevated. In addition, a robust increase in CCL2 was seen in the milk of LPS-infused cows, whereas G-CSF, CXCL1, and histamine in milk were unaffected. By using a metabolomics approach, a transient increase of plasma lactose was seen in LPS-induced cows. In plasma, significant reductions in ketone bodies (3-hydroxybutyrate and acetoacetate) and decreased levels of short-chain fatty acids, known to be major products released from the gut microbiota, were observed after LPS infusion; a profound reduction of plasma citrate was also seen. Intramammary LPS infusion also caused major changes in the milk metabolome, although with a delay in comparison with plasma, including a reduction of lactose. We conclude that the LPS-induced acute mastitis rapidly affects the plasma metabolome and cytokine induction with similar kinetics as the development of the clinical signs, whereas the corresponding effects in milk occurred with a delay.

20.
J Agric Food Chem ; 66(33): 8876-8884, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30044633

ABSTRACT

Membrane lipids, including sphingolipids and glycerol-phospholipids, are essential in maintaining the skin's barrier function in mammals, but their composition in fish skin and their response to diets have not been evaluated. This study investigated the impacts of reducing dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on membrane lipids in the skin of Atlantic salmon through a 26 week feeding regime supplying different levels (0-2.0% of dry mass) of EPA/DHA. Ceramide, glucosylceramide, sphingomyelin, sphingosine, and sphinganine in salmon skin were analyzed for the first time. Higher concentrations of glucosylceramide and sphingomyelin and higher ratios of glucosylceramide/ceramide and sphingomyelin/ceramide were detected in the deficient group, indicating interruptions in sphingolipidomics. Changes in the glycerol-phospholipid profile in fish skin caused by reducing dietary EPA and DHA were observed. There were no dietary impacts on epidermal thickness and mucus-cell density, but the changes in the phospholipid profile suggest that low dietary EPA and DHA may interrupt the barrier function of fish skin.


Subject(s)
Animal Feed/analysis , Docosahexaenoic Acids/analysis , Eicosapentaenoic Acid/analysis , Membrane Lipids/chemistry , Skin/chemistry , Animals , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Glucosylceramides/analysis , Glucosylceramides/metabolism , Glycerol/analysis , Glycerol/metabolism , Membrane Lipids/metabolism , Phospholipids/analysis , Phospholipids/metabolism , Salmo salar , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...