Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e31940, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845958

ABSTRACT

This review paper examines the crucial role of nanowires in the field of quantum computing, highlighting their importance as versatile platforms for qubits and vital building blocks for creating fault-tolerant and scalable quantum information processing systems. Researchers are studying many categories of nanowires, including semiconductor, superconducting, and topological nanowires, to explore their distinct quantum features that play a role in creating various qubit designs. The paper explores the interdisciplinary character of quantum computing, combining the fields of quantum physics and materials science. This text highlights the significance of quantum gate operations in manipulating qubits for computation, thus creating the toolbox of quantum algorithms. The paper emphasizes the key research areas in quantum technology, such as entanglement engineering, quantum error correction, and a wide range of applications spanning from encryption to climate change modeling. The research highlights the importance of tackling difficulties related to decoding mitigation, error correction, and hardware scalability to fully utilize the transformative potential of quantum computing in scientific, technical, and computational fields.

2.
Heliyon ; 10(8): e29244, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628721

ABSTRACT

This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.

3.
Heliyon ; 10(1): e24122, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38226272

ABSTRACT

This comprehensive review investigates a variety of creative approaches in the field of sustainable food packaging biomaterials in response to growing environmental concerns and the negative effects of traditional plastic packaging. The study carefully looks at new developments in biomaterials, such as biodegradable polymers, ceramics, composites, and metal alloys, in response to the growing need for environmentally suitable substitutes. It highlights how they might replace conventional plastic packaging and lessen environmental damage. Moreover, the incorporation of nanotechnology into packaging is closely examined due to its crucial function in improving barrier qualities, introducing antimicrobial properties, and introducing smart packaging features. The investigation includes edible coatings and films made of biodegradable polymers that offer new sensory experiences in addition to prolonging the shelf life of products. The review emphasizes the use of biomaterials derived from food processing and agricultural waste, supporting environmentally responsible methods of producing materials while simultaneously using less resources and waste. As a strong defense against plastic pollution, the report highlights the food industry's increasing use of recyclable and biodegradable packaging, which is in line with the concepts of the circular economy. A movement in consumer tastes and regulatory pressures toward sustainable food packaging is evident in global market patterns. Notwithstanding these encouraging trends, there are still issues to be resolved, including cost-effectiveness, technological constraints, and the scalability of biomaterial production. This thorough analysis concludes by highlighting the critical role biomaterials have played in guiding the food industry toward sustainability and emphasizing the need for ongoing research and development to adequately address environmental issues on a worldwide scale and satisfy the growing demand for environmentally friendly packaging options. Biomaterials show great promise as catalysts for the food industry's transition to a sustainable future.

4.
Heliyon ; 9(5): e15973, 2023 May.
Article in English | MEDLINE | ID: mdl-37215906

ABSTRACT

Nanoparticles are minimal materials with unique physicochemical features that set them apart from bulk materials of the same composition. These properties make nanoparticles highly desirable for use in commercial and medical research. The primary intention for the development of nanotechnology is to achieve overarching social objectives like bettering our understanding of nature, boosting productivity, improving healthcare, and extending the bounds of sustainable development and human potential. Keeping this as a motivation, Zirconia nanoparticles are becoming the preferred nanostructure for modern biomedical applications. This nanotechnology is exceptionally versatile and has several potential uses in dental research. This review paper concentrated on the various benefits of zirconium nanoparticles in dentistry and how they provide superior strength and flexibility compared to their counterparts. Moreover, the popularity of zirconium nanoparticles is also growing as it has strong biocompatibility potency. Zirconium nanoparticles can be used to develop or address the major difficulty in dentistry. Therefore, this review paper aims to provide a summary of the fundamental research and applications of zirconium nanoparticles in dental implants.

SELECTION OF CITATIONS
SEARCH DETAIL
...