Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroinform ; 14: 30, 2020.
Article in English | MEDLINE | ID: mdl-32792932

ABSTRACT

As experimental neuroscience is moving toward more integrative approaches, with a variety of acquisition techniques covering multiple spatiotemporal scales, data management is becoming increasingly challenging for neuroscience laboratories. Often, datasets are too large to practically be stored on a laptop or a workstation. The ability to query metadata collections without retrieving complete datasets is therefore critical to efficiently perform new analyses and explore the data. At the same time, new experimental paradigms lead to constantly changing specifications for the metadata to be stored. Despite this, there is currently a serious lack of agile software tools for data management in neuroscience laboratories. To meet this need, we have developed Expipe, a lightweight data management framework that simplifies the steps from experiment to data analysis. Expipe provides the functionality to store and organize experimental data and metadata for easy retrieval in exploration and analysis throughout the experimental pipeline. It is flexible in terms of defining the metadata to store and aims to solve the storage and retrieval challenges of data/metadata due to ever changing experimental pipelines. Due to its simplicity and lightweight design, we envision Expipe as an easy-to-use data management solution for experimental laboratories, that can improve provenance, reproducibility, and sharing of scientific projects.

2.
PLoS Comput Biol ; 14(5): e1006156, 2018 05.
Article in English | MEDLINE | ID: mdl-29771919

ABSTRACT

Visually evoked signals in the retina pass through the dorsal geniculate nucleus (dLGN) on the way to the visual cortex. This is however not a simple feedforward flow of information: there is a significant feedback from cortical cells back to both relay cells and interneurons in the dLGN. Despite four decades of experimental and theoretical studies, the functional role of this feedback is still debated. Here we use a firing-rate model, the extended difference-of-Gaussians (eDOG) model, to explore cortical feedback effects on visual responses of dLGN relay cells. For this model the responses are found by direct evaluation of two- or three-dimensional integrals allowing for fast and comprehensive studies of putative effects of different candidate organizations of the cortical feedback. Our analysis identifies a special mixed configuration of excitatory and inhibitory cortical feedback which seems to best account for available experimental data. This configuration consists of (i) a slow (long-delay) and spatially widespread inhibitory feedback, combined with (ii) a fast (short-delayed) and spatially narrow excitatory feedback, where (iii) the excitatory/inhibitory ON-ON connections are accompanied respectively by inhibitory/excitatory OFF-ON connections, i.e. following a phase-reversed arrangement. The recent development of optogenetic and pharmacogenetic methods has provided new tools for more precise manipulation and investigation of the thalamocortical circuit, in particular for mice. Such data will expectedly allow the eDOG model to be better constrained by data from specific animal model systems than has been possible until now for cat. We have therefore made the Python tool pyLGN which allows for easy adaptation of the eDOG model to new situations.


Subject(s)
Geniculate Bodies/cytology , Models, Neurological , Visual Pathways/physiology , Animals , Cats , Computational Biology , Feedback , Mice
3.
PLoS Comput Biol ; 14(1): e1005930, 2018 01.
Article in English | MEDLINE | ID: mdl-29377888

ABSTRACT

Despite half-a-century of research since the seminal work of Hubel and Wiesel, the role of the dorsal lateral geniculate nucleus (dLGN) in shaping the visual signals is not properly understood. Placed on route from retina to primary visual cortex in the early visual pathway, a striking feature of the dLGN circuit is that both the relay cells (RCs) and interneurons (INs) not only receive feedforward input from retinal ganglion cells, but also a prominent feedback from cells in layer 6 of visual cortex. This feedback has been proposed to affect synchronicity and other temporal properties of the RC firing. It has also been seen to affect spatial properties such as the center-surround antagonism of thalamic receptive fields, i.e., the suppression of the response to very large stimuli compared to smaller, more optimal stimuli. Here we explore the spatial effects of cortical feedback on the RC response by means of a a comprehensive network model with biophysically detailed, single-compartment and multicompartment neuron models of RCs, INs and a population of orientation-selective layer 6 simple cells, consisting of pyramidal cells (PY). We have considered two different arrangements of synaptic feedback from the ON and OFF zones in the visual cortex to the dLGN: phase-reversed ('push-pull') and phase-matched ('push-push'), as well as different spatial extents of the corticothalamic projection pattern. Our simulation results support that a phase-reversed arrangement provides a more effective way for cortical feedback to provide the increased center-surround antagonism seen in experiments both for flashing spots and, even more prominently, for patch gratings. This implies that ON-center RCs receive direct excitation from OFF-dominated cortical cells and indirect inhibitory feedback from ON-dominated cortical cells. The increased center-surround antagonism in the model is accompanied by spatial focusing, i.e., the maximum RC response occurs for smaller stimuli when feedback is present.


Subject(s)
Geniculate Bodies/physiology , Models, Neurological , Retinal Ganglion Cells/cytology , Visual Cortex/physiology , Visual Pathways/physiology , Animals , Computer Simulation , Feedback , Humans , Interneurons/physiology , Membrane Potentials , Neurons/physiology , Normal Distribution , Orientation/physiology , Retina/physiology , Synapses/physiology , Synaptic Transmission , Thalamic Nuclei
SELECTION OF CITATIONS
SEARCH DETAIL
...