Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 07 17.
Article in English | MEDLINE | ID: mdl-37458420

ABSTRACT

The Drosophila polyadenosine RNA binding protein Nab2, which is orthologous to a human protein lost in a form of inherited intellectual disability, controls adult locomotion, axon projection, dendritic arborization, and memory through a largely undefined set of target RNAs. Here, we show a specific role for Nab2 in regulating splicing of ~150 exons/introns in the head transcriptome and focus on retention of a male-specific exon in the sex determination factor Sex-lethal (Sxl) that is enriched in female neurons. Previous studies have revealed that this splicing event is regulated in females by N6-methyladenosine (m6A) modification by the Mettl3 complex. At a molecular level, Nab2 associates with Sxl pre-mRNA in neurons and limits Sxl m6A methylation at specific sites. In parallel, reducing expression of the Mettl3, Mettl3 complex components, or the m6A reader Ythdc1 rescues mutant phenotypes in Nab2 flies. Overall, these data identify Nab2 as an inhibitor of m6A methylation and imply significant overlap between Nab2 and Mettl3 regulated RNAs in neuronal tissue.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Humans , Female , Male , Methylation , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Alternative Splicing , RNA Splicing , Drosophila Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA/metabolism , Drosophila/genetics , Neurons/metabolism
2.
Curr Biol ; 29(17): 2790-2800.e4, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31402304

ABSTRACT

The Drosophila Taiman (Tai) protein is homologous to the human steroid-receptor coactivators SRC1-3 and activates transcription in complex with the 20-hydroxyecdysone (20E) receptor (EcR). Tai has roles in intestinal homeostasis, germline maintenance, cell motility, and proliferation through interactions with EcR and the coactivator Yorkie (Yki). Tai also promotes invasion of tumor cells in adjacent organs, but this pro-invasive mechanism is undefined. Here, we show that Tai expression transforms sessile pupal wing cells into an invasive mass that penetrates the adjacent thorax during a period of high 20E. Candidate analysis confirms a reliance on elements of the 20E and Hippo pathways, such as Yki and the Yki-Tai target dilp8. Screening the Tai-induced wing transcriptome detects enrichment for innate immune factors, including the Spätzle (Spz) family of secreted Toll ligands that induce apoptosis during cell competition. Tai-expressing wing cells induce immune signaling and apoptosis among adjacent thoracic cells, and genetic reduction of spz, Toll, or the rpr/hid/grim pro-apoptotic factors each suppresses invasion, suggesting an intercellular Spz-Toll circuit supports killing-mediated invasion. Modeling these interactions in larval epithelia confirms that Tai kills neighboring cells via a mechanism involving Toll, Spz factors, and the Spz inhibitor Necrotic. Tai-expressing cells evade death signals by repressing the immune deficiency (IMD) pathway, which operates in parallel to Toll to control nuclear factor κB (NF-κB) activity and independently regulates JNK activity. In sum, these findings suggest that Tai promotes competitive cell killing via Spz-Toll and that this killing mechanism supports pathologic intertissue invasion in Drosophila.


Subject(s)
Drosophila Proteins/genetics , Drosophila/physiology , Ecdysterone/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Wings, Animal/growth & development , Animals , Apoptosis/genetics , Drosophila/genetics , Drosophila/growth & development , Drosophila Proteins/metabolism , Pupa/genetics , Pupa/growth & development , Pupa/physiology , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Transcription Factors/metabolism
3.
Front Cell Dev Biol ; 7: 384, 2019.
Article in English | MEDLINE | ID: mdl-32010696

ABSTRACT

The Hippo pathway is a well conserved signaling cascade that modulates cell proliferation and survival in response to external cues such as cell:cell contact, injury, and nutritional status. Models of the Hippo pathway have evolved from a series of genetic interactions defined in the fruit fly Drosophila melanogaster into a complex series of biochemical mechanisms in which transmembrane and cytoskeletal proteins modulate cytoplasmic phosphatase and kinase activities that converge on the serine/threonine kinase Warts (Wts) to regulate nuclear entry of the co-activator protein Yorkie (Yki; vertebrate Yap1). This pathway is well conserved in human cells and broadly implicated in cancer. Progress in understanding biochemical events within the Hippo pathway highlights a need for improved understanding of the cell biological contexts in which these molecular interactions occur. A significant body of data linking Hippo signaling to membranes and proteins involved in intracellular membrane trafficking raise the possibility that some molecular regulatory events occur on the cytoplasmic face of vesicles. In Drosophila, a Yki-vesicle link was solidified by discoveries that cytoplasmic Yki concentrates at late-endosomes and physically interacts with two endosomal adaptor proteins, Myopic (Mop) and Leash. These two proteins are required for Yki to transit the endolysosomal pathway and be turned over in lysosomes. Molecules involved in recruiting and tethering Yki along this endosomal route are not defined but are predicted to play key roles in regulating Yki levels and thus Hippo-responsiveness of cells. As Wts is recruited to the apical membrane by upstream Hippo components, endosomal internalization could also affect complexes involved in Yki phosphorylation events that alter nucleocytoplasmic shuttling. Recent work has revealed an unexpected, non-transcriptional role of membrane-associated Yki in triggering actinomyosin contractility via the myosin-regulatory light chain Spaghetti squash (Sqh). How Yki interacts with the membrane and controls Sqh is unclear, but this mechanism represents a novel regulatory mechanism based on induced localization of Yki to a specific membrane compartment. These and other data will be discussed as we review data linking Yki to membrane and vesicular traffic in development and homeostasis and speculate on missing elements of these membrane-linked Yki regulatory mechanisms.

4.
Dis Model Mech ; 3(9-10): 540-4, 2010.
Article in English | MEDLINE | ID: mdl-20663965

ABSTRACT

Genetics, and more recently genomics, reveal striking conservation in the fundamental signaling pathways that underlie normal and aberrant cell processes. Consequently, various genetic model organisms are now attracting the interest of biomedical scientists who are focused on therapeutic approaches to human disease. There are now several examples of studies in which Drosophila seems likely to facilitate advances in potential therapies, and a recent report has demonstrated the utility of the fly model for understanding and treating human disease. Basic developmental genetic information first obtained in Drosophila was used to design a therapeutic block to oncogenic Notch signaling that was associated with leukemia in mice. The story of Notch signaling in Drosophila demonstrates the potential for standard Drosophila molecular genetics in developing therapeutic strategies that are relevant to human disease.


Subject(s)
Disease Models, Animal , Drosophila Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Nuclear Proteins/metabolism , Animals , Drosophila melanogaster/metabolism , Humans , Mice , Mutant Proteins/metabolism , Receptors, Notch/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...