Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 26(11): 2109-2123, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33268917

ABSTRACT

This experiment aimed to investigate the status of tomato plants in terms of sink or source-limitation of 2 cultivars of greenhouse tomato (Solanum lycopersicum L.), i.e., 'Grandella' and 'Isabella' under the greenhouse conditions of Iran and to improve the yield and plant growth by manipulating the sink-source balance. To this end, 4 treatments were applied: leaves were not pruned and fruits were pruned to one per truss (1F/3L), leaves were not pruned and fruits were pruned to two per truss (2F/3L), leaves were not pruned and fruits were pruned to three per truss (3F/3L) and no leaf and fruit pruning (control). The results showed that truss pruning reduced the sink demand and consequently, increased the amount of available assimilate for the growth of the remaining fruits or vegetative parts. The negative correlation between the leaf area index and the net assimilation rate and no significant difference in the net assimilation rate between different sink/source ratios showed that the excess leaf area index does not contribute in increasing the  assimilate production and hence, total yield. Total fruit weight, harvest index, and the ratio of the ripe fruits to the total fruit led to the highest yield for control plants. No changes in chlorophyll, protein content and nitrate reductase activity were the evidence for the fact that sink/source ratio  do not affect light-harvesting and light-utilizing components of photosynthesis. Since the individual weight of fruits increased with decreasing fruit number per trusses, the growth of individual fruits in both cultivars was source-limited and truss pruning can decrease this limitation. Future studies should be carried out to determine the best level of sink/source ratio that in addition to producing an acceptable amount of yield, meets the needs of consumers in the current stressful world by increasing the antioxidant and nutriceutical content of fruits.

2.
Physiol Plant ; 170(1): 120-131, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32356387

ABSTRACT

To examine the physiological role of hexose transporters in determining the sink strength of individual fruits, the regulation of hexose transporters gene expression was studied when the sink/source ratio was artificially altered under the greenhouse condition; this was done in two cultivars of tomato, i.e. Grandella and Isabella. The sink/source ratio treatments included: saving one fruit per truss (1F), two fruits per truss (2F), three fruits per truss (3F) and no fruit pruning (control). The results showed that fruit thinning could increase starch, sucrose, and hexose contents in the fruits; it could also modulate the activity of the key enzymes and the expression of tomato hexose transporter genes (LeHTs). Based on the relative transcript levels, all examined LeHTs were unregulated at the end of cell division and the cell expansion stage of fruit development, but the strongest expression level observed at the onset of ripening was related to LeHT1 and LeHT2. Given the concomitancy of cell wall invertase (EC 3.2.1.26) activity and the LeHTs relative expression cell wall, invertase activity seemed to be involved in the expression level of LeHTs. The increased trends of the LeHTs expression with the decrease of the sink/source ratio confirmed the role of hexose transporters in determining the sink strength of the tomato fruits.


Subject(s)
Solanum lycopersicum/genetics , Fruit/genetics , Hexoses , Monosaccharide Transport Proteins/genetics , beta-Fructofuranosidase
SELECTION OF CITATIONS
SEARCH DETAIL
...