Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 60(23): 9769-9789, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29116786

ABSTRACT

We report here the discovery and pharmacological characterization of N-(1-benzyl-1H-pyrazol-3-yl)-2-phenylacetamide derivatives as potent, selective, brain-penetrating T-type calcium channel blockers. Optimization focused mainly on solubility, brain penetration, and the search for an aminopyrazole metabolite that would be negative in an Ames test. This resulted in the preparation and complete characterization of compound 66b (ACT-709478), which has been selected as a clinical candidate.


Subject(s)
Benzeneacetamides/chemistry , Benzeneacetamides/pharmacology , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Epilepsy, Generalized/drug therapy , Animals , Benzeneacetamides/metabolism , Benzeneacetamides/pharmacokinetics , Brain/drug effects , Brain/metabolism , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/pharmacokinetics , Dogs , Drug Discovery , Epilepsy, Generalized/metabolism , Guinea Pigs , Humans , Macaca fascicularis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Rats, Wistar , Structure-Activity Relationship
2.
Chimia (Aarau) ; 71(10): 722-729, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29070417

ABSTRACT

We describe the discovery and optimization of new, brain-penetrant T-type calcium channel blockers. We present optimized compounds with excellent efficacy in a rodent model of generalized absence-like epilepsy. Along the fine optimization of a chemical series with a pharmacological target located in the CNS (target potency, brain penetration, and solubility), we successfully identified an Ames negative aminopyrazole as putative metabolite of this compound series. Our efforts culminated in the selection of compound 20, which was elected as a preclinical candidate.


Subject(s)
Calcium Channel Blockers/therapeutic use , Calcium Channels, T-Type/drug effects , Drug Discovery , Epilepsy, Generalized/drug therapy , Animals , Calcium Channels, T-Type/physiology , Disease Models, Animal , Humans , Mice , Rats
3.
J Med Chem ; 53(15): 5827-43, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20590088

ABSTRACT

Bioisoteric replacement of the metabolically labile N-methyl amide group of a series of benzoxazinones with small heterocyclic rings has led to novel series of fused tricyclic benzoxazines which are potent 5-HT(1A/B/D) receptor antagonists with and without concomitant human serotonin transporter (hSerT) activity. Optimizing against multiple parameters in parallel identified 6-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}-4H-imidazo[5,1-c][1,4]benzoxazine-3-carboxamide (GSK588045) as a potent 5-HT(1A/B/D) receptor antagonist with a high degree of selectivity over human ether-a-go-go related gene (hERG) potassium channels, favorable pharmacokinetics, and excellent activity in vivo in rodent pharmacodynamic (PD) models. On the basis of its outstanding overall profile, this compound was progressed as a clinical candidate with the ultimate aim to assess its potential as a faster acting antidepressant/anxiolytic with reduced side-effect burden.


Subject(s)
Anti-Anxiety Agents/chemical synthesis , Antidepressive Agents/chemical synthesis , Benzoxazines/chemical synthesis , Serotonin 5-HT1 Receptor Antagonists , Animals , Anti-Anxiety Agents/pharmacokinetics , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacokinetics , Antidepressive Agents/pharmacology , Benzoxazines/pharmacokinetics , Benzoxazines/pharmacology , Callithrix , Cell Line , Cerebral Cortex/metabolism , Cricetinae , Cricetulus , Cytochrome P-450 Enzyme System/metabolism , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/metabolism , Guinea Pigs , Humans , In Vitro Techniques , Male , Microsomes, Liver/metabolism , Protein Binding , Radioligand Assay , Rats , Rats, Sprague-Dawley , Serotonin Plasma Membrane Transport Proteins/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...