Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2763: 3-36, 2024.
Article in English | MEDLINE | ID: mdl-38347396

ABSTRACT

A mucin-type glycoprotein extracted from various species of jellyfish (JF) is named qniumucin (Q-mucin). Compared with general mucins, most of which are from mammals including humans, Q-mucin can be collected on a relatively large scale with high yield. Owing to its simple structure with low heterogeneity, Q-mucin has a potential to be developed into material mucins which opens various applications valuable to humans. On the basis of our present knowledge, here, we describe our protocol for the extraction of Q-mucin, which can be extracted from any JF species worldwide. Experimental protocols to identify the structure of Q-mucin are also introduced.


Subject(s)
Mucins , Scyphozoa , Animals , Humans , Mucins/chemistry , Scyphozoa/chemistry , Mammals
2.
Med Phys ; 50(2): 1073-1085, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36335533

ABSTRACT

PURPOSE: The precise assessment of the dose distribution of high linear energy transfer (LET) radiation remains a challenge, because the signal of most dosimeters will be saturated due to the high ionization density. Such measurements are particularly important for heavy-ion beam cancer therapy. On this basis, the present work examined the high LET effect associated with three-dimensional gel dosimetry based on radiation-induced chemical reactions. The purpose of this study was to create an ion beam radio-fluorogenic gel dosimeter with a reduced effect of LET. METHODS: Nanoclay radio-fluorogenic gel (NC-RFG) dosimeters were prepared, typically containing 100 µM dihydrorhodamine 123 (DHR123) and 2.0 wt% nanoclay together with catalytic additives promoting Fenton or Fenton-like reactions. The radiological properties of NC-RFG dosimeters having different compositions in response to a carbon-ion beam were investigated using a fluorescence gel scanner. RESULTS: An NC-RFG dosimeter capable of generating a fluorescence intensity distribution reflecting the carbon-ion beam dose profile was obtained. It was clarified that the reduction of the unfavorable LET dependence results from an acceleration of the reactions between DHR123 and H2 O2 , which is a molecular radiolysis product. The effects of varying the preparation conditions on the radiological properties of these gels were also examined. The optimum H2 O2 catalyst was determined to include 1 mM Fe3+ ions, and the addition of 100 mM pyridine was also found to increase the sensitivity. CONCLUSIONS: This technique allows the first-ever evaluation of the depth-dose profile of a carbon-ion beam at typical therapeutic levels of several Gy without LET effect.


Subject(s)
Linear Energy Transfer , Radiation Dosimeters , Radiometry/methods , Ions , Gels , Carbon/therapeutic use
3.
Phys Med Biol ; 65(17): 175008, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32485693

ABSTRACT

Dose distributions have become more complex with the introduction of image-guided brachytherapy in high-dose-rate (HDR) brachytherapy treatments. Therefore, to correctly execute HDR, conducting a quality assurance programme for the remote after-loading system and verifying the dose distribution in the patient treatment plan are necessary. The characteristics of the dose distribution of HDR brachytherapy are that the dose is high near the source and rapidly drops when the distance from the source increases. Therefore, a measurement tool corresponding to the characteristic is required. In this study, using an Iridium-192 (Ir-192) source, we evaluated the basic characteristics of a nanoclay-based radio-fluorogenic gel (NC-RFG) dosimeter that is a fluorescent gel dosimeter using dihydrorhodamine 123 hydrochloride as a fluorescent probe. The two-dimensional dose distribution measurements were performed at multiple source positions to simulate a clinical plan. Fluorescence images of the irradiated NC-RFG were obtained at a high resolution (0.04 mm pixel-1) using a gel scanner with excitation at 465 nm. Good linearity was confirmed up to a dose range of 100 Gy without dose rate dependence. The dose distribution measurement at the five-point source position showed good agreement with the treatment planning system calculation. The pass ratio by gamma analysis was 92.1% with a 2%/1 mm criterion. The NC-RFG dosimeter demonstrates to have the potential of being a useful tool for quality assurance of the dose distribution delivered by HDR brachytherapy. Moreover, compared with conventional gel dosimeters such as polymer gel and Fricke gel dosimeters it solves the problems of diffusion, dose rate dependence and inhibition of oxygen-induced reactions. Furthermore, it facilitates dose data to be read in a short time after irradiation, which is useful for clinical use.


Subject(s)
Brachytherapy , Fluorescent Dyes , Radiation Dosage , Radiometry/instrumentation , Gels , Humans , Iridium Radioisotopes , Radiotherapy Dosage , Rhodamines
4.
RSC Adv ; 10(48): 28798-28806, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-35520075

ABSTRACT

Dosimetry of spatial dose distribution of ionizing radiation in tissue equivalent materials is particularly important for cancer radiotherapy. Here, we describe a radio-fluorogenic gel-based dosimeter that has achieved 16 times higher sensitivity by incorporating surfactants and halogenides. The gel dosimeters were prepared from dihydrorhodamine 123 (DHR123) and small amounts of nano-sized clay and a radiosensitizer. By comprehensively changing the type of additives for the sensitizer (three surfactants: Triton X-100, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide, and three halogenides: trichloroacetic acid, tribromoacetic acid and 2,2,2-trichloroethanol), the increase in sensitivity can be explained by an increase in relative fluorescence quantum yield and an increase in radiation chemical yield. These highly sensitive gel dosimeters also show dose rate independent sensitivity under irradiation at 0.64 and 0.77 Gy min-1 using a 6 MV X-ray therapeutic beam from the medical linac.

SELECTION OF CITATIONS
SEARCH DETAIL
...