Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Thromb Haemost ; 123(1): 16-26, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36307100

ABSTRACT

BACKGROUND: Thrombomodulin (TM) functions as a dual modulator-anticoagulant and antifibrinolytic potential-by the thrombin-dependent activation of protein C and thrombin-activatable fibrinolysis inhibitor (TAFI). Activated TAFI cleaves the C-terminal lysine of partially degraded fibrin and inhibits both plasminogen binding and its activation on the fibrin surface. We have reported previously that activated platelets initiate fibrin network formation and trigger fibrinolysis after the accumulation of tissue-type plasminogen activator and plasminogen. OBJECTIVE: To analyze the effects of domain-deletion variants of TM on coagulation and fibrinolysis at different concentrations. METHODS: Domain-deletion variants of TM, such as D123 (all extracellular regions), E3456 (minimum domains for thrombin-dependent activation of protein C and TAFI), and E456 (minimum domains for that of protein C but not TAFI), were used at 0.25 to 125 nM for turbidimetric assay to determine the clotting time and clot lysis time and to visualize fibrin network formation and lysis in platelet-containing plasma. RESULTS AND CONCLUSIONS: A low concentration of either D123 or E3456, but not of E456, prolonged clot lysis time, and delayed the accumulation of fluorescence-labeled plasminogen at the activated platelets/dense fibrin area due to effective TAFI activation. Conversely, only the highest concentrations of all three TM variants delayed the clotting time, though fibrin network formation in the vicinity of activated platelets was almost intact. TAFI activation might be affected by attenuation in thrombin activity after the clot formation phase. These findings suggest that the spatiotemporal balance between the anticoagulant and antifibrinolytic potential of TM is controlled in domain- and concentration-dependent manners.


Subject(s)
Antifibrinolytic Agents , Carboxypeptidase B2 , Humans , Fibrinolysis , Fibrin Clot Lysis Time , Protein C/metabolism , Thrombin/metabolism , Thrombomodulin , Fibrin/metabolism , Anticoagulants/pharmacology , Plasminogen
2.
Blood Adv ; 4(21): 5501-5511, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33166409

ABSTRACT

Our previous real-time imaging studies directly demonstrated the spatiotemporal regulation of clot formation and lysis by activated platelets. In addition to their procoagulant functions, platelets enhanced profibrinolytic potential by augmenting the accumulation of tissue-type plasminogen activator (tPA) and plasminogen, in vivo in a murine microthrombus model, and in vitro in a platelet-containing plasma clot model. To clarify the role of thrombin-activatable fibrinolysis inhibitor (TAFI), which regulates coagulation-dependent anti-fibrinolytic potential, we analyzed tPA-induced clot lysis times in platelet-containing plasma. Platelets prolonged clot lysis times in a concentration-dependent manner, which were successfully abolished by a thrombomodulin-neutralizing antibody or an activated TAFI inhibitor (TAFIaI). The results obtained using TAFI- or factor XIII-deficient plasma suggested that TAFI in plasma, but not in platelets, was essential for this prolongation, though its cross-linkage with fibrin was not necessary. Confocal laser scanning microscopy revealed that fluorescence-labeled plasminogen accumulated on activated platelet surfaces and propagated to the periphery, similar to the propagation of fibrinolysis. Plasminogen accumulation and propagation were both enhanced by TAFIaI, but only accumulation was enhanced by thrombomodulin-neutralizing antibody. Labeled TAFI also accumulated on both fibrin fibers and activated platelet surfaces, which were Lys-binding-site-dependent and Lys-binding-site-independent, respectively. Finally, TAFIaI significantly prolonged the occlusion times of tPA-containing whole blood in a microchip-based flow chamber system, suggesting that TAFI attenuated the tPA-dependent prolongation of clot formation under flow. Thus, activated platelet surfaces are targeted by plasma TAFI, to attenuate plasminogen accumulation and fibrinolysis, which may contribute to thrombogenicity under flow.


Subject(s)
Carboxypeptidase B2 , Animals , Blood Coagulation , Blood Platelets , Fibrin Clot Lysis Time , Fibrinolysis , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...