Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 12(2): 815-821, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33416333

ABSTRACT

Silicene, the silicon analogue of graphene, represents a new class of two-dimensional (2D) materials, which shares some of the outstanding physical properties of graphene. Furthermore, it has the advantage of being compatible with the current Si-based technology. However, this 2D material is not stable and is quite prone to oxidation. The hydride-terminated silicene, called silicane, is a more stable form of 2D silicon, if functionalized via, for example, the hydrosilylation reaction. In this work, the third-order nonlinear optical (NLO) properties of two functionalized silicanes, namely hydride-terminated silicon nanosheets (SiNS-H) and 1-dodecene-functionalized silicon nanosheets (SiNS-dodecene), are accessed and compared to those of single-layer graphene, under 35 ps, 532 and 1064 nm excitation. The present results show that the functionalized silicanes exhibit comparable and even higher NLO response than that of single-layer graphene, making them strong competitors of graphene and very interesting candidates for future photonic and optoelectronic applications.

2.
Nanomaterials (Basel) ; 8(10)2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30274162

ABSTRACT

Copper nanowires (CuNWs) have increasingly become subjected to academic and industrial research, which is attributed to their good performance as a transparent electrode (TE) material that competes with the one of indium tin oxide (ITO). Recently, an environmentally friendly and aqueous synthesis of CuNWs was demonstrated, without the use of hydrazine that is known for its unfavorable properties. In this work, we extend the current knowledge for the aqueous synthesis of CuNWs by studying their up-scaling potential. This potential is an important aspect for the commercialization and further development of CuNW-based devices. Due to the scalability and homogeneity of the deposition process, spray coating was selected to produce films with a low sheet resistance of 7.6 Ω/sq. and an optical transmittance of 77%, at a wavelength of 550 nm. Further, we present a comprehensive investigation of the degradation of CuNWs when subjected to different environmental stresses such as the exposure to ambient air, elevated temperatures, high electrical currents, moisture or ultraviolet (UV) light. For the oxidation process, a model is derived to describe the dependence of the breakdown time with the temperature and the initial resistance. Finally, polymer coatings made of polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA), as well as oxide coatings composed of electron beam evaporated silicon dioxide (SiO2) and aluminum oxide (Al2O3) are tested to hinder the oxidation of the CuNW films under current flow.

SELECTION OF CITATIONS
SEARCH DETAIL
...