Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 640: 122967, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37084831

ABSTRACT

In this work, a potent hyaluronidase inhibitor (ascorbyl stearate (AS)) was successfully employed to design vancomycin-loaded solid lipid nanoparticles (VCM-AS-SLNs) with biomimetic and enzyme-responsive features, to enhance the antibacterial efficacy of vancomycin against bacterial-induced sepsis. The VCM-AS-SLNs prepared were biocompatible and had appropriate physicochemical parameters. The VCM-AS-SLNs showed an excellent binding affinity to the bacterial lipase. The in vitro drug release study showed that the release of the loaded vancomycin was significantly accelerated by the bacterial lipase. The in silico simulations and MST studies confirmed the strong binding affinity of AS and VCM-AS-SLNs to bacterial hyaluronidase compared to its natural substrate. This binding superiority indicates that AS and VCM-AS-SLNs could competitively inhibit the effect of hyaluronidase enzyme, and thus block its virulence action. This hypothesis was further confirmed using the hyaluronidase inhibition assay. The in vitro antibacterial studies against sensitive and resistant Staphylococcus aureus revealed that the VCM-AS-SLNs had a 2-fold lower minimum inhibitory concentration, and a 5-fold MRSA biofilm elimination compared to the free vancomycin. Furthermore, the bactericidal-kinetic showed a 100% bacterial clearance rate within 12 h of treatment with VCM-AS-SLNs, and <50 % eradication after 24 h for the bare VCM. Therefore, the VCM-AS-SLN shows potential as an innovative multi-functional nanosystem for effective and targeted delivery of antibiotics.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Anti-Bacterial Agents/pharmacology , Vancomycin/pharmacology , Hyaluronoglucosaminidase/pharmacology , Biomimetics , Lipase
2.
Chem Phys Lipids ; 249: 105241, 2022 11.
Article in English | MEDLINE | ID: mdl-36152880

ABSTRACT

The rampant antimicrobial resistance crisis calls for efficient and targeted drug delivery of antibiotics at the infectious site. Hence, this study aimed to synthesize a pH-responsive dimethylglycine surface-modified branched lipid (DMGSAD-lipid). The structure of the synthesized lipid was fully confirmed. The lipid polymer hybrid nanoparticles (LPHNPs) were formulated using the solvent evaporation method and characterised. Two LPHNPs (VCM_HS15_LPHNPs and VCM_RH40_LPHNPs) were formulated and characterised for size, polydispersity index (PDI), and zeta potential (ZP). Atomistic molecular dynamics simulations revealed that both the systems self-assembled to form energetically stable aggregates. The ZP of RH40_VCM_LPHNPs changed from 0.55 ± 0.14-9.44 ± 0.33 Vm, whereas for SH15_VCM_LPHNPs, ZP changed from - 1.55 ± 0.184 Vm to 9.83 ± 0.52 Vm at pH 7.4 and 6.0, respectively. The encapsulation efficiencies of VCM were above 40% while the drug release was faster at acidic pH when compared to pH 7.4. The antibacterial activity of LPHNPs against MRSA was eight-fold better in MICs at pH 6.0, compared to 7.4, when compared to bare VCM-treated specimens. The study confirms that pH-responsive LPHNPs have the potential for enhancing the treatment of bacterial infections and other diseases characterised by acidic conditions at the target site.


Subject(s)
Anti-Bacterial Agents , Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Vancomycin/chemistry , Nanoparticles/chemistry , Polymers , Lipids/chemistry , Hydrogen-Ion Concentration
3.
Int J Biol Macromol ; 222(Pt A): 546-561, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36150574

ABSTRACT

The incidence and of bacterial infections, and resulting mortality, among cancer patients is growing dramatically, worldwide. Several therapeutics have been reported to have dual anticancer and antibacterial activity. However, there is still an urgent need to develop new drug delivery strategies to improve their clinical efficacy. Therefore, this study aimed to develop a novel acid cleavable prodrug (HA-Cip) from ciprofloxacin and hyaluronic acid to simultaneously enhance the anticancer and antibacterial properties of Cip as a superior drug delivery system. HA-Cip was synthesised and characterised (FT-IR, HR-MS, and H1 NMR). HA-Cip generated stable micelles with an average particle size, poly dispersion index (PDI) and zeta potential (ZP) of 237.89 ± 25.74 nm, 0.265 ± 0.013, and -17.82 ± 1.53 mV, respectively. HA-Cip showed ≥80 % cell viability against human embryonic kidney 293 cells (non-cancerous cells), ˂0.3 % haemolysis; and a faster pH-responsive ciprofloxacin release at pH 6.0. HA-Cip showed a 5.4-fold improvement in ciprofloxacin in vitro anticancer activity against hepatocellular cancer (HepG2) cells; and enhanced in vitro antibacterial activity against Escherichia coli and Klebsiella pneumoniae at pH 6.0. Our findings show HA-Cip as a promising prodrug for targeted delivery of ciprofloxacin to efficiently treat bacterial infections associated, and/or co-existing, with cancer.


Subject(s)
Bacterial Infections , Neoplasms , Prodrugs , Humans , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Prodrugs/pharmacology , Prodrugs/therapeutic use , Hyaluronic Acid/chemistry , Spectroscopy, Fourier Transform Infrared , Neoplasms/drug therapy , Anti-Bacterial Agents/chemistry , Bacterial Infections/drug therapy , Drug Delivery Systems
4.
Biometals ; 35(2): 363-394, 2022 04.
Article in English | MEDLINE | ID: mdl-35275314

ABSTRACT

In this communication, we feature the synthesis and in-depth characterization of a series of silver(I) complexes obtained from the complexation of quinolin-4-yl Schiff base ligands ((E)-2-((quinolin-4-ylmethylene)amino)phenol La, 2-(quinolin-4-yl)benzo[d]thiazole Lb, (E)-N-(2-fluorophenyl)-1-(quinolin-4-yl)methanimine Lc, (E)-N-(4-chlorophenyl)-1-(quinolin-4-yl)methanimine Ld, (E)-1-(quinolin-4-yl)-N-(p-tolyl)methanimine Le, (E)-1-(quinolin-4-yl)-N-(thiophen-2-ylmethyl)methanimine Lf) and three different silver(I) anions (nitrate, perchlorate and triflate). Structurally, the complexes adopted different coordination geometries, which included distorted linear or distorted tetrahedral geometry. The complexes were evaluated in vitro for their potential antibacterial and antioxidant activities. In addition, their interactions with calf thymus-DNA (CT-DNA) and bovine serum albumin (BSA) were evaluated. All the complexes had a wide spectrum of effective antibacterial activity against gram-positive and gram-negative bacterial and good antioxidant properties. The interactions of the complexes with CT-DNA and BSA were observed to occur either through intercalation or through a minor groove binder, while the interaction of the complexes with BSA reveals that some of the complexes can strongly quench the fluorescence of BSA through the static mechanism. The molecular docking studies of the complexes were also done to further elucidate the modes of interaction with CT-DNA and BSA.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Coordination Complexes , Anions , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Molecular Docking Simulation , Serum Albumin, Bovine/chemistry , Structure-Activity Relationship
5.
Int J Biol Macromol ; 206: 381-397, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35202637

ABSTRACT

Biofilms are a global health concern because they are associated with chronic and recurrent infections as well as resistance to conventional antibiotics. The aim of this study was to prepare a nanogel for the co-delivery of NO and AMPs against bacteria and biofilms. The NO-releasing nanogel was prepared by crosslinking HA solution with divinyl sulfone and extensively characterized. The nanogel was found to be biocompatible, injectable and NO release from the gel was sustained over a period of 24 h. In vitro antibacterial studies showed that the NO-AMP-loaded nanogel exhibited a broad spectrum antibacterial/antibiofilm activity. The NO-releasing nanogel had a greater antibacterial effect when compared to NO alone with MIC values of 1.56, 0.78 and 0.39 µg/ml against Escherichia coli, Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa bacteria respectively. The antibiofilm results showed there was a 12.5 and 24-folds reduction in biofilms of MRSA, and P. aeruginosa respectively for catheters exposed to nanogel loaded with AMP/NO when compared to only NO, while a 7 and 9.4-folds reduction in biofilms of MRSA, and P. aeruginosa respectively was displayed by the nanogel loaded with only NO compared to only NO. The AMP/NO-releasing nanogel showed the potential to combat both biofilms and bacterial infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides , Biofilms , Escherichia coli , Hyaluronic Acid , Microbial Sensitivity Tests , Nanogels , Nitric Oxide , Polyethylene Glycols , Polyethyleneimine , Pseudomonas aeruginosa
6.
ACS Omega ; 6(34): 21994-22010, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34497894

ABSTRACT

Chronic wound infections caused by antibiotic-resistant bacteria have become a global health concern. This is attributed to the biofilm-forming ability of bacteria on wound surfaces, thus enabling their persistent growth. In most cases, it leads to morbidity and in severe cases mortality. Current conventional approaches used in the treatment of biofilm wounds are proving to be ineffective due to limitations such as the inability to penetrate the biofilm matrix; hence, biofilm-related wounds remain a challenge. Therefore, there is a need for more efficient alternate therapeutic interventions. Hydrogen peroxide (HP) is a known antibacterial/antibiofilm agent; however, prolonged delivery has been challenging due to its short half-life. In this study, we developed a hydrogel for the codelivery of HP and antimicrobial peptides (Ps) against bacteria, biofilms, and wound infection associated with biofilms. The hydrogel was prepared via the Michael addition technique, and the physiochemical properties were characterized. The safety, in vitro, and in vivo antibacterial/antibiofilm activity of the hydrogel was also investigated. Results showed that the hydrogel is biosafe. A greater antibacterial effect was observed with HP-loaded hydrogels (CS-HP; hydrogel loaded with HP and CS-HP-P; hydrogel loaded with HP and peptide) when compared to HP as seen in an approximately twofold and threefold decrease in minimum inhibitory concentration values against methicillin-resistant Staphylococcus aureus (MRSA) bacteria, respectively. Similarly, both the HP-releasing hydrogels showed enhanced antibiofilm activity in the in vivo study in mice models as seen in greater wound closure and enhanced wound healing in histomorphological analysis. Interestingly, the results revealed a synergistic antibacterial/antibiofilm effect between HP and P in both in vitro and in vivo studies. The successfully prepared HP-releasing hydrogels showed the potential to combat bacterial biofilm-related infections and enhance wound healing in mice models. These results suggest that the HP-releasing hydrogels may be a superior platform for eliminating bacterial biofilms without using antibiotics in the treatment of chronic MRSA wound infections, thus improving the quality of human health.

7.
J Inorg Biochem ; 225: 111600, 2021 12.
Article in English | MEDLINE | ID: mdl-34507122

ABSTRACT

A series of Cu(II) complexes were synthesized by using N-hydroxy-N,N'-diarylformamidine ligands: N-hydroxy-N,N'-(phenyl)formamidine (L1), N-hydroxy-N'-(4-methylphenyl)formamidine (L2), N-hydroxy-N,N'-(2,6-dimethylphenyl)formamidine (L3), N-hydroxy-N,N'-(2,6-diisopropylphenyl)formamidine (L4). Reaction of ligands L1-L4 with hydrated copper acetate furnished mononuclear Cu(II) complexes 1-4 with general formula [Cu-(L)2]. The molecular structures of complexes 3 and 4, as determined by single crystal X-ray diffraction, showed both to have square planar geometry with a near C2 symmetry. The antimicrobial potency of all four complexes was evaluated against three gram-(-) bacteria (S. typhimurium, P. aeruginosa, and E. coli) and two gram-(+) bacteria (Methicillin-resistant S. aureus (MRSA) and S. aureus), with ciprofloxacin as the reference drug. All tested complexes were inactive against gram-(+) bacteria strains except for complex 1, which displayed excellent activity when compared to the reference. Molecular docking studies showed that hydrogen bonding, pi-sigma and van der Waals interactions are prominent complex-protein connections, with complex 2 displaying good binding affinities with the studied biological targets.


Subject(s)
Amidines/pharmacology , Anti-Bacterial Agents/pharmacology , Coordination Complexes/pharmacology , Aldehyde-Lyases/metabolism , Amide Synthases/metabolism , Amidines/chemical synthesis , Amidines/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Bacteria/drug effects , Bacterial Proteins/metabolism , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Copper/chemistry , Crystallography, X-Ray , Molecular Docking Simulation , Molecular Structure , Protein Binding
8.
Int J Pharm ; 607: 120960, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34333022

ABSTRACT

In this study, ascorbyl tocopherol succinate (ATS) was designed, synthesized and characterized via FT-IR, HR-MS, H1 NMR and C13 NMR, to simultaneously confer biomimetic and dual responsive properties of an antibiotic nanosystem to enhance their antibacterial efficacy and reduce antimicrobial resistance. Therefore, an in silico-aided design (to mimic the natural substrate of bacterial lipase) was employed to demonstrate the binding potential of ATS to lipase (-32.93 kcal/mol binding free energy (ΔGbind) and bacterial efflux pumps blocking potential (NorA ΔGbind: -37.10 kcal/mol, NorB ΔGbind: -34.46 kcal/mol). ATS bound stronger to lipase than the natural substrate (35 times lower Kd value). The vancomycin loaded solid lipid nanoparticles (VM-ATS-SLN) had a hydrodynamic diameter, zeta potential, polydispersity index and entrapment efficiency of 106.9 ± 1.4 nm, -16.5 ± 0.93 mV, 0.11 ± 0.012 and 61.9 ± 1.31%, respectively. In vitro biocompatibility studies revealed VM-ATS-SLN biosafety and non-haemolytic activity. Significant enhancement in VM release was achieved in response to acidified pH and lipase enzyme, compared to controls. VM-ATS-SLN showed enhanced sustained in vitro antibacterial activity for 5 days, 2-fold greater MRSA biofilm growth inhibition and 3.44-fold reduction in bacterial burden in skin infected mice model compared to bare VM. Therefore, ATS shows potential as a novel multifunctional adjuvant for effective and targeted delivery of antibiotics.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Animals , Anti-Bacterial Agents , Biomimetics , Hydrogen-Ion Concentration , Lipase , Lipids , Mice , Particle Size , Spectroscopy, Fourier Transform Infrared , Vancomycin , Vitamins
9.
Colloids Surf B Biointerfaces ; 207: 112043, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34416442

ABSTRACT

Fight against antimicrobial resistance calls for innovative strategies that can target infection sites and enhance activity of antibiotics. Herein is a pH responsive multilamellar vesicles (MLVs) for targeting bacterial infection sites. The vancomycin (VCM) loaded MLVs had 62.25 ± 8.7 nm, 0.15 ± 0.01 and -5.55 ± 2.76 mV size, PDI and zeta potential, respectively at pH 7.4. The MLVs had a negative ZP at pH 7.4 that switched to a positive charge and faster release of the drug at acidic pH. The encapsulation efficiency was found to be 46.34 ± 3.88 %. In silico studies of the lipids, interaction suggested an energetically stable system. Studies to determine the minimum inhibitory concentration studies (MIC) showed the MLVs had 2-times and 8-times MIC against Staphylococcus aureus (SA) and Methicillin resistance SA respectively at physiological pH. While at pH 6.0 there was 8 times reduction in MICs for the formulation against SA and MRSA in comparison to the bare drug. Fluorescence-activated Cell Sorting (FACS) studies demonstrated that even with 8-times lower MIC, MLVs had a similar elimination ability of MRSA cells when compared to the bare drug. Fluorescence microscopy showed MLVs had the ability to clear biofilms while the bare drug could not. Mice skin infection models studies showed that the colony finding units (CFUs) of MRSA recovered from groups treated with MLVs was 4,050 and 525-fold lower than the untreated and bare VCM treated groups, respectively. This study demonstrated pH-responsive multilamellar vesicles as effective system for targeting and enhancing antibacterial agents.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Animals , Anti-Bacterial Agents/pharmacology , Hydrogen-Ion Concentration , Mice , Microbial Sensitivity Tests , Vancomycin/pharmacology
10.
Int J Pharm ; 607: 120990, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34389419

ABSTRACT

Transdermal drug delivery is an attractive route of administration relative to other routes as it offers enhanced therapeutic efficacy. However, due to poor skin permeability of certain drugs, their application in transdermal delivery is limited. The ultra-deformable nature of transferosomes makes them suitable vehicles for transdermal delivery of drugs that have high molecular weights and hydrophilicity. However, their low viscosity, which leads to low contact time on the surface of the skin, has restricted their application in transdermal delivery. Therefore, this study aimed to deliver transferosomes loaded with a highly water-soluble and high molecular weight vancomycin hydrochloride (VCM-HCl) via a bigel for systemic delivery and treatment of microbial infections. VCM-HCl-loaded transferosomal formulations (TNFs) were prepared using a reverse-phase evaporation method and then loaded into a bigel. Both the TNFs and TNFs-loaded bigel (TNF-L-B) were characterized by a range of in vitro and ex vivo techniques. TNFs and TNF-L-B were tested for biosafety via the MTT assay and found to be biosafe. Prepared TNFs had sizes, zeta potential and entrapment efficiency of 63.02 ± 5.34 nm, -20.93 ± 6.13 mV and 84.48 ± 1.22% respectively. VCM-HCl release from TNF-L-B showed a prolonged release profile with 39.76 ± 1.6% after 24hrs when compared to bare VCM-HCl loaded in the bigel (74.81 ± 8.84%). Ex-vivo permeation of prepared TNF-L-B showed a higher permeation flux of 0.56 µg/cm2/h compared to the bare VCM-HCl-loaded bigel of 0.23 µg/cm2/h, indicating superior permeation and bioavailability of the drug. Additionally, the prepared TNF-L-B demonstrated improved antimicrobial activity. The TNF-L-B showed minimum inhibitory concentrations (MIC) of 0.97 µg/ml against Staphylococcus aureus (SA) and 1.95 µg/ml against methicillin-resistant SA (MRSA), which were 2-fold lower MIC values than the bare drug. The time-kill assay showed that both TNFs and TNF-L-B systems caused a 5.6-log reduction (100%) in MRSA compared to bare VCM-HCl after 24 hrs of incubation. Furthermore, as opposed to the bare VCM-HCl solution, the degree of biofilm reduction caused by TNFs (55.72%) and TNF-L-B (34.58%) suggests their dominance in eradicating MRSA biofilm. These findings indicate that TNF-L-B is a promising system for transdermal delivery of hydrophilic and high molecular weight drugs.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Humans , Liposomes , Vancomycin
11.
Chem Biodivers ; 18(5): e2100096, 2021 May.
Article in English | MEDLINE | ID: mdl-33724670

ABSTRACT

A series of quinazolin-4-one Schiff bases were synthesized and tested in vitro for their cytotoxicity against two cancerous cell lines (MCF-7, Caco-2) and a human embryonic cell line (HEK-293) including their antibacterial evaluation against two Gram-positive and four Gram-negative bacterial strains. Most of the quinazoline-Schiff bases exhibited potent cytotoxicity against Caco-2. 3-[(Z)-({4-[(But-2-yn-1-yl)oxy]phenyl}methylidene)amino]-2-methylquinazolin-4(3H)-one (6f) with the O-butyne functional group displayed three-fold higher cytotoxic activity (IC50 =376.8 µM) as compared to 5-fluorouracil (5-FU; IC50 =1086.1 µM). However, all compounds were found to be toxic to HEK-293, except for 3-[(Z)-({4-[(2,4-difluorophenyl)methoxy]phenyl}methylidene)amino]-2-methylquinazolin-4(3H)-one (6h) that showed ∼three-fold lower toxicity and higher selectivity index than 5-FU. Structure-activity relationship (SAR) analysis revealed that O-alkylation generally increased the anticancer activity and selectivity of quinazoline-4-one Schiff bases toward Caco-2 cells. The fluorinated Schiff-base generally exhibited even more significant cytotoxic activity compared to their chlorine analogs. Surprisingly, none of the quinazoline-4-one Schiff bases displayed encouraging antibacterial activity against the bacterial strains investigated. Most of the compounds were predicted to show compliance with the Lipinski parameters and ADMET profiles, indicating their drug-like properties.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Quinazolinones/pharmacology , Acylation , Alkylation , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Molecular Structure , Quinazolinones/chemical synthesis , Quinazolinones/chemistry , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Schiff Bases/pharmacology
12.
Molecules ; 26(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668169

ABSTRACT

A series of fifteen silver (I) quinoline complexes Q1-Q15 have been synthesized and studied for their biological activities. Q1-Q15 were synthesized from the reactions of quinolinyl Schiff base derivatives L1-L5 (obtained by condensing 2-quinolinecarboxaldehyde with various aniline derivatives) with AgNO3, AgClO4 and AgCF3SO3. Q1-Q15 were characterized by various spectroscopic techniques and the structures of [Ag(L1)2]NO3Q1, [Ag(L1)2]ClO4Q6, [Ag(L2)2]ClO4Q7, [Ag(L2)2]CF3SO3Q12 and [Ag(L4)2]CF3SO3Q14 were unequivocally determined by single crystal X-ray diffraction analysis. In vitro antimicrobial tests against Gram-positive and Gram-negative bacteria revealed the influence of structure and anion on the complexes' moderate to excellent antibacterial activity. In vitro antioxidant activities of the complexes showed their good radical scavenging activity in ferric reducing antioxidant power (FRAP). Complexes with the fluorine substituent or the thiophene or benzothiazole moieties are more potent with IC50 between 0.95 and 2.22 mg/mL than the standard used, ascorbic acid (2.68 mg/mL). The compounds showed a strong binding affinity with calf thymus-DNA via an intercalation mode and protein through a static quenching mechanism. Cytotoxicity activity was examined against three carcinoma cell lines (HELA, MDA-MB231, and SHSY5Y). [Ag(L2)2]ClO4Q7 with a benzothiazole moiety and [Ag(L4)2]ClO4Q9 with a methyl substituent had excellent cytotoxicity against HELA cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Coordination Complexes/pharmacology , DNA/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Ferric Compounds/antagonists & inhibitors , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Microbial Sensitivity Tests , Oxidation-Reduction , Quinolines/chemistry , Quinolines/pharmacology , Schiff Bases/chemistry , Schiff Bases/pharmacology , Silver/chemistry , Silver/pharmacology
13.
J Liposome Res ; 31(1): 45-63, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31663407

ABSTRACT

pH responsive drug delivery systems are one of the new strategies to address the spread of bacterial resistance to currently used antibiotics. The aim of this study was to formulate liposomes with 'On' and 'Off'' pH responsive switches for infection site targeting. The vancomycin (VCM) loaded liposomes had sizes below 100 nm, at pH 7.4. The QL-liposomes had a negative zeta potential at pH 7.4 that switched to a positive charge at acidic pH. VCM release from the liposome was quicker at pH 6 than pH 7.4. The OA-QL-liposome showed 4-fold lower MIC at pH 7.4 and 8- and 16-fold lower at pH 6.0 against both MSSA and MRSA compared to the bare drug. OA-QL liposome had a 1266.67- and 704.33-fold reduction in the intracellular infection for TPH-1 macrophage and HEK293 cells respectively. In vivo studies showed that the amount of MRSA recovered from mice treated with formulations was 189.67 and 6.33-fold lower than the untreated and bare VCM treated mice respectively. MD simulation of the QL lipid with the phosphatidylcholine membrane (POPC) showed spontaneous binding of the lipid to the bilayer membrane both electrostatic and Van der Waals interactions contributed to the binding. These studies demonstrated that the 'On' and 'Off' pH responsive liposomes enhanced the activity targeted and intracellular delivery VCM.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Delivery Systems , Staphylococcus aureus/drug effects , Vancomycin/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Cell Line , Cell Survival/drug effects , Drug Liberation , Humans , Hydrogen-Ion Concentration , Liposomes/chemistry , Liposomes/pharmacology , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Vancomycin/chemistry
14.
J Inorg Biochem ; 214: 111266, 2021 01.
Article in English | MEDLINE | ID: mdl-33166866

ABSTRACT

Synthesis and spectroscopic characterization of five ligands ((E)-2-((pyridin-2-ylmethylene)amino)phenol L1, 2-(pyridin-2-yl)benzo[d]thiazole L2, (E)-N-(2-fluorophenyl)-1-(pyridin-2-yl)methanimine L3, (E)-1-(pyridin-2-yl)-N-(p-tolyl)methanimine L4 and (E)-1-(pyridin-2-yl)-N-(thiophen-2-ylmethyl)methanimine L5 along with fifteen silver(I) complexes of L1 - L5, with a general formula [AgL2]+X- (L = Schiff base and X = NO3-, ClO4- or CF3SO3-) is reported. The structures of complexes [Ag(L4)2]NO3, [Ag(L5)2]NO3, [Ag(L3)2]ClO4, [Ag(L4)2]ClO4 and [Ag(L5)2]CF3SO3 were determined unequivocally by single crystal X-ray diffraction analysis. Calf-thymus deoxyribonucleic acid (CT-DNA), bovine serum albumin (BSA) binding studies, antioxidant, and antibacterial studies were performed for all complexes. Complexes [Ag(L2)2]NO3, [Ag(L5)2]NO3, [Ag(L1)2]ClO4 and [Ag(L3)2]ClO4 whose ligands have an OH- and F- as substituents or with a thiophene or thiazole moiety showed better antibacterial activities with lower minimum inhibitory concentration (MIC) values compared to the standard ciprofloxacin, against most of the bacterial strains tested. Similarly, complexes [Ag(L1)2]NO3,[Ag(L2)2]NO3,[Ag(L3)2]NO3 and [Ag(L5)2]NO3 with the NO3- anion, [Ag(L1)2]ClO4 and [Ag(L2)2]ClO4 with ClO4- anion, and [Ag(L5)2]CF3SO3 with CF3SO3- anion showed higher activities for antioxidant studies. Complexes [Ag(L4)2]ClO4 and [Ag(L4)2]CF3SO3 with the Methyl substituent and CF3SO3- as the anion, displayed high antioxidant activities in FRAP (ferric reducing antioxidant power) than the standard ascorbic acid. Spectroscopic studies of all the complexes revealed their moderate to high interaction with calf thymus DNA via an intercalation mode. In addition, the relatively moderate interaction of most of the complexes with BSA was through a static quenching mechanism.


Subject(s)
Anti-Bacterial Agents , Bacteria/growth & development , Coordination Complexes , DNA/chemistry , Silver , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Silver/chemistry , Silver/pharmacology
15.
J Biomol Struct Dyn ; 39(17): 6567-6584, 2021 10.
Article in English | MEDLINE | ID: mdl-32772814

ABSTRACT

The global antimicrobial resistance crisis has prompted worldwide efforts to develop new and more efficient antimicrobial compounds, as well as to develop new drug delivery strategies and targeting mechanisms. This study aimed to synthesize a novel polyethylene glycol-fusidic acid (PEG-FA) conjugate for self-assembly into nano-sized structures and explore its potential for simultaneously enhancing aqueous solubility and antibacterial activity of FA. In addition, the ability of PEG-FA to bind to HSA with lower affinity than FA is also investigated. Haemolysis and in vitro cytotoxicity studies confirmed superior biosafety of the novel PEG-FA compared to FA. The water solubility of FA after PEG conjugation was increased by 25-fold compared to the bare drug. PEG-FA nanoparticles displayed particle size, polydispersity index and zeta potential of 149.3 ± 0.21 nm, 0.267 ± 0.01 and 5.97 ± 1.03 mV, respectively. Morphology studies using high-resolution transmission electron microscope revealed a homogenous spherical shape of the PEG-FA nanoparticles. In silico studies showed that Van der Waals forces facilitated PEG-FA self-assembly. HSA binding studies showed that PEG-FA had very weak or no interaction with HSA using in silico molecular docking (-2.93 kcal/mol) and microscale thermophoresis (Kd=14999 ± 1.36 µM), which may prevent bilirubin displacement. Conjugation with PEG did not inhibit the antibacterial activity of FA but rather enhanced it by 2.5-fold against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus, compared to the bare FA. These results show that PEG-FA can simultaneously enhance solubility and antibacterial activity of FA, whilst also reducing binding of HSA to decrease its side effects.


Subject(s)
Fusidic Acid , Methicillin-Resistant Staphylococcus aureus , Molecular Docking Simulation , Polymers , Serum Albumin , Solubility
16.
Pharmaceutics ; 12(11)2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33202629

ABSTRACT

Globally, human beings continue to be at high risk of infectious diseases caused by methicillin-resistant Staphylococcus aureus (MRSA); and current treatments are being depleted due to antimicrobial resistance. Therefore, the synthesis and formulation of novel materials is essential for combating antimicrobial resistance. The study aimed to synthesize a quaternary bicephalic surfactant (StBAclm) and thereof to formulate pH-responsive vancomycin (VCM)-loaded quatsomes to enhance the activity of the antibiotic against MRSA. The surfactant structure was confirmed using 1H, 13C nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and high-resolution mass spectrometry (HRMS). The quatsomes were prepared using a sonication/dispersion method and were characterized using various in vitro, in vivo, and in silico techniques. The in vitro cell biocompatibility studies of the surfactant and pH-responsive vancomycin-loaded quatsomes (VCM-StBAclm-Qt1) revealed that they are biosafe. The prepared quatsomes had a mean hydrodynamic diameter (MHD), polydispersity index (PDI), and drug encapsulation efficiency (DEE) of 122.9 ± 3.78 nm, 0.169 ± 0.02 mV, and 52.22 ± 8.4%, respectively, with surface charge switching from negative to positive at pH 7.4 and pH 6.0, respectively. High-resolution transmission electron microscopy (HR-TEM) characterization of the quatsomes showed spherical vesicles with MHD similar to the one obtained from the zeta-sizer. The in vitro drug release of VCM from the quatsomes was faster at pH 6.0 compared to pH 7.4. The minimum inhibitory concentration (MIC) of the drug loaded quatsomes against MRSA was 32-fold and 8-fold lower at pH 6.0 and pH 7.4, respectively, compared to bare VCM, demonstrating the pH-responsiveness of the quatsomes and the enhanced activity of VCM at acidic pH. The drug-loaded quatsomes demonstrated higher electrical conductivity and a decrease in protein and deoxyribonucleic acid (DNA) concentrations as compared to the bare drug. This confirmed greater MRSA membrane damage, compared to treatment with bare VCM. The flow cytometry study showed that the drug-loaded quatsomes had a similar bactericidal killing effect on MRSA despite a lower (8-fold) VCM concentration when compared to the bare VCM. Fluorescence microscopy revealed the ability of the drug-loaded quatsomes to eradicate MRSA biofilms. The in vivo studies in a skin infection mice model showed that groups treated with VCM-loaded quatsomes had a 13-fold decrease in MRSA CFUs when compared to the bare VCM treated groups. This study confirmed the potential of pH-responsive VCM-StBAclm quatsomes as an effective delivery system for targeted delivery and for enhancing the activity of antibiotics.

17.
Amino Acids ; 52(10): 1439-1457, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33074344

ABSTRACT

Antimicrobial peptides (AMPs) have the ability to penetrate as well as transport cargo across bacterial cell membranes, and they have been labeled as exceptional candidates to function in drug delivery. The aim of this study was to investigate the effectiveness of novel formulation of AMPs for enhanced MRSA activity. The strategy was carried out through the formulation of liposomes by thin-layer film hydration methodology, containing phosphatidylcholine, cholesterol, oleic acid, the novel AMP, as well as vancomycin (VCM). Characterization of the AMPs and liposomes included HPLC and LCMS for peptide purity and mass determination; DLS (size, polydispersity, zeta potential), TEM (surface morphology), dialysis (drug release), broth dilution, and flow cytometry (antibacterial activity); MTT assay, haemolysis and intracellular antibacterial studies. The size, PDI, and zeta potential of the drug-loaded AMP2-Lipo-1 were 102.6 ± 1.81 nm, 0.157 ± 0.01, and - 9.81 ± 1.69 mV, respectively, while for AMP3-Lipo-2 drug-loaded formulation, it was 146.4 ± 1.90 nm, 0.412 ± 0.05, and - 4.27 ± 1.25 mV respectively at pH 7.4. However, in acidic pH for both formulations, we observed an increase in size, PDI, and a switch to positive zeta potential, which indicated the pH responsiveness of our liposomal systems. The in vitro drug release studies demonstrated that liposomal formulations released VCM-HCl at a faster rate at pH 6.0 compared to pH 7.4. In vitro antibacterial activity against S. aureus and MRSA revealed that liposomes had enhanced activity at pH 6 compared to pH 7.4. The study revealed that the formulation can potentially be used to enhance activity and penetration of AMPs, thereby improving the treatment of bacterial infections.


Subject(s)
Anti-Bacterial Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Pore Forming Cytotoxic Proteins/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Survival/drug effects , Drug Liberation , Humans , Hydrogen-Ion Concentration , Liposomes/chemistry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Oleic Acid/chemistry , Pore Forming Cytotoxic Proteins/chemical synthesis , Pore Forming Cytotoxic Proteins/pharmacology , Vancomycin/chemistry
18.
Pharm Dev Technol ; 25(9): 1090-1108, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32684052

ABSTRACT

In this study self-assembled drug delivery system (SADDs) composed of a hydrophobic d-α-tocopherol succinate (TS) and a hydrophilic vancomycin (VCM) were formulated, and its potential for enhancing the antibacterial activity of VCM against Staphylococcus aureus (SA) and Methicillin-resistant Staphylococcus aureus (MRSA) were explored. The SADDs were synthesized via supramolecular complexation, then characterized for in silico, in vitro and in vivo studies. In silico studies confirmed the self-assembly of VCM/TS into NPs. The size, surface charge and drug loading of the SADDs was ˂100 nm, -27 mV and 68%, respectively. The SADDs were non-hemolytic and biosafe. A sustained release of VCM from SADDs was noted, with 52.2% release after 48 hr. The in vitro antibacterial test showed a twofold decrease in Minimum inhibitory concentration (MIC) against SA and MRSA, and a significantly higher reduction in MRSA biofilms compared to bare VCM. Further, in silico studies confirmed strong and stable binding of TS to MRSA efflux pumps. The in vivo study using mice skin infection models showed a 9.5-fold reduction in bacterial load after treatment with SADDs, in comparison with bare VCM. These findings affirmed that VCM/TS NPs as a promising novel nano-delivery for treating bacterial infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Vancomycin/pharmacology , alpha-Tocopherol/pharmacology , A549 Cells , Animals , Cell Line , Cell Line, Tumor , Computer Simulation , Drug Carriers/chemistry , Drug Delivery Systems/methods , HEK293 Cells , Humans , MCF-7 Cells , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests/methods , Nanoparticles/chemistry , Particle Size , Staphylococcal Infections/drug therapy
19.
J Pharm Sci ; 109(8): 2594-2606, 2020 08.
Article in English | MEDLINE | ID: mdl-32473209

ABSTRACT

The aim of this study was to synthesize a novel biocompatible pH-responsive oleic acid-based dendritic lipid amphiphile (OLA-SPDA) which self-assembled into stable micelles (OLA-SPDA -micelles) with a relatively low critical micelle concentration (CMC) of 5.6 × 10-6 M. The formulated micelles had particle size, polydispersity index (PDI) and zeta potential (ZP) of 84.16 ± 0.184 nm, 0.199 ± 0.011 and -42.6 ± 1.98 mV, respectively, at pH 7.4. The vancomycin (VCM) encapsulation efficiency was 78.80 ± 3.26%. The micelles demonstrated pH-responsiveness with an increase in particle size to 141.1 ± 0.0707 nm and a much faster release profile at pH 6.0, as compared to pH 7.4. The minimum inhibitory concentration (MIC) of VCM-OLA-SPDA-micelle against methicillin-resistant staphylococcus aureus (MRSA) was 8-fold lower compared to bare VCM, and the formulation had a 4-fold lower MIC at pH 6.0 when compared to the formulation's MIC at pH 7.4. MRSA viability assay showed the micelles had a percentage killing of 93.39% when compared bare-VCM (58.21%) at the same MIC (0.98 µg/mL). In vivo mice (BALB/c) skin infection models showed an 8-fold reduction in MRSA burden after treatment with VCM-OLA-SPDA-micelles when compared with bare VCM. The above results suggest that pH-responsive VCM-OLA-SPDA-micelles has the potential to be an effective carrier to enhance therapeutic outcomes against infections characterised by low pH.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Animals , Anti-Bacterial Agents/pharmacology , Hydrogen-Ion Concentration , Mice , Mice, Inbred BALB C , Micelles , Oleic Acid , Propionates , Tail
20.
Int J Biol Macromol ; 147: 385-398, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31926237

ABSTRACT

The development of novel materials is necessary for adequate delivery of drugs to combat the Methicillin-resistant Staphylococcus aureus (MRSA) burden due to the limitations of conventional methods and challenges associated with antimicrobial resistance. Hence, this study aimed to synthesise a novel oleylamine based zwitterionic lipid (OLA) and explore its potential to formulate chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (VM-OLA-LPHVs1) to deliver VM against MRSA. The OLA was synthesised, and the structure characterised by 1H NMR, 13C NMR, FT-IR and HR-MS. The preliminary biocompatibility of OLA and VM-OLA-LPHVs1 was evaluated on HEK-293, A-549, MCF-7 and HepG-2 cell lines using in vitro cytotoxicity assay. The VM-OLA-LPHVs1 were formulated by ionic gelation method and characterised in order to determine the hydrodynamic diameter (DH), morphology in vitro and in vivo antibacterial efficacy. The result of the in vitro cytotoxicity study revealed cell viability of above 75% in all cell lines when exposed to OLA and VM-OLA-LPHVs1, thus indicating their biosafety. The VM-OLA-LPHVs1 had a DH, polydispersity index (PDI), and EE% of 198.0 ± 14.04 nm, 0.137 ± 0.02, and 45.61 ± 0.54% respectively at physiological pH, with surface-charge (ζ) switching from negative at pH 7.4 to positive at pH 6.0. The VM release from the VM-OLA-LPHVs1 was faster at pH 6.0 compared to physiological pH, with 97% release after 72-h. The VM-OLA-LPHVs1 had a lower minimum inhibitory concentration (MIC) value of 0.59 µg/mL at pH 6.0 compared to 2.39 µg/mL at pH 7.4, against MRSA with 52.9-fold antibacterial enhancement. The flow cytometry study revealed that VM-OLA-LPHVs1 had similar bactericidal efficacy on MRSA compared to bare VM, despite an 8-fold lower VM concentration in the nanovesicles. Additionally, fluorescence microscopy study showed the ability of the VM-OLA-LPHVs1 to eliminate biofilms. The electrical conductivity, and protein/DNA concentration, increased and decreased respectively, as compared to bare VM which indicated greater MRSA membrane damage. The in vivo studies in a BALB/c mouse-infected skin model treated with VM-OLA-LPHVs1 revealed 95-fold lower MRSA burden compared to the group treated with bare VM. These findings suggest that OLA can be used as an effective novel material for complexation with biodegradable polymer chitosan (CHs) to form pH-responsive VM-OLA-LPHVs1 nanovesicles which show greater potential for enhancement and improvement of treatment of bacterial infections.


Subject(s)
Anti-Bacterial Agents , Chitosan , Drug Carriers , Lipids , Methicillin-Resistant Staphylococcus aureus/growth & development , Nanoparticles , Staphylococcal Infections/drug therapy , Vancomycin , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacokinetics , Chitosan/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Hydrogen-Ion Concentration , Lipids/chemistry , Lipids/pharmacokinetics , Lipids/pharmacology , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Vancomycin/chemistry , Vancomycin/pharmacokinetics , Vancomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...