Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928127

ABSTRACT

Valvular disease is a complex pathological condition that impacts countless individuals around the globe. Due to limited treatments, it is crucial to understand its mechanisms to identify new targets. Valve disease may result in pulmonary venous hypertension, which is linked to compromised functioning of the alveolar and capillary membranes and hindered gas exchange. Nonetheless, the correlation between surfactant proteins (SPs) and valve disease remains unexplored. A total of 44 patients were enrolled in this study, with 36 undergoing aortic valve replacement and 8 needing a second aortic valve substitution due to bioprosthetic valve degeneration. Ten healthy subjects were also included. The results showed that patients who underwent both the first valve replacement and the second surgery had significantly higher levels of immature SP-B (proSP-B) compared to control subjects. The levels of the extra-lung collectin SP-D were higher in patients who needed a second surgery due to bioprosthetic valve degeneration, while SP-A levels remained unchanged. The research also showed that there was no reciprocal relationship between inflammation and SP-D as the levels of inflammatory mediators did not differ between groups. The present study demonstrates that circulating proSP-B serves as a reliable marker of alveolar-capillary membrane damage in patients with valvular heart disease.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Calcinosis , Pulmonary Surfactant-Associated Protein B , Humans , Aortic Valve Stenosis/blood , Aortic Valve Stenosis/surgery , Male , Female , Pulmonary Surfactant-Associated Protein B/blood , Pulmonary Surfactant-Associated Protein B/metabolism , Aged , Calcinosis/blood , Aortic Valve/surgery , Aortic Valve/pathology , Middle Aged , Biomarkers/blood , Case-Control Studies
2.
Antioxidants (Basel) ; 13(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38790688

ABSTRACT

Atherosclerosis is a complex condition that involves the accumulation of lipids and subsequent plaque formation in the arterial intima. There are various stimuli, cellular receptors, and pathways involved in this process, but oxidative modifications of low-density lipoprotein (ox-LDL) are particularly important in the onset and progression of atherosclerosis. Ox-LDLs promote foam-cell formation, activate proinflammatory pathways, and induce smooth-muscle-cell migration, apoptosis, and cell death. One of the major receptors for ox-LDL is LOX-1, which is upregulated in several cardiovascular diseases, including atherosclerosis. LOX-1 activation in endothelial cells promotes endothelial dysfunction and induces pro-atherogenic signaling, leading to plaque formation. The binding of ox-LDLs to LOX-1 increases the generation of reactive oxygen species (ROS), which can induce LOX-1 expression and oxidize LDLs, contributing to ox-LDL generation and further upregulating LOX-1 expression. This creates a vicious circle that is amplified in pathological conditions characterized by high plasma levels of LDLs. Although LOX-1 has harmful effects, the clinical significance of inhibiting this protein remains unclear. Further studies both in vitro and in vivo are needed to determine whether LOX-1 inhibition could be a potential therapeutic target to counteract the atherosclerotic process.

3.
Antioxidants (Basel) ; 13(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38539884

ABSTRACT

Albumin (HSA) is the most abundant circulating protein and plays a pivotal role in maintaining the redox state of the plasma. Three HSA proteoforms have been identified based on the redox state of cysteine 34. These proteoforms comprise of the reduced state (HSA-SH) referred to as mercaptoalbumin, non-mercaptoalbumin-1, containing a disulfide with small thiols such as cysteine (HSA-Cys), and non-mercaptoalbumin-2, representing the higher oxidized proteoform. Several clinical studies have shown a relationship between an individual's serum HSA redox status and the severity of diseases such as heart failure, diabetes mellitus, and liver disease. Furthermore, when HSA undergoes oxidation, it can worsen certain health conditions and contribute to their advancement. This study aimed to evaluate the ability of the redox compounds AD4/NACA and the thioredoxin mimetic (TXM) peptides TXM-CB3, TXM-CB13, and TXM-CB30 to regenerate HSA-SH and to enhance its redox activity. The HSA proteoforms were quantified by LC-MS, and the antioxidant activity was determined using dichlorofluorescin. Each of the compounds exhibited a significant increase in HSA-SH and a reduction in HSA-Cys levels. The increase in HSA-SH was associated with a recovery of its antioxidant activity. In this work, we unveil a novel mechanistic facet of the antioxidant activity of AD4/NACA and TXM peptides. These results suggest an additional therapeutic approach for addressing oxidative stress-related conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...