Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 268(Pt 2): 131763, 2024 May.
Article in English | MEDLINE | ID: mdl-38657928

ABSTRACT

Hsp16.3 plays a vital role in the slow growth of Mycobacterium tuberculosis via its chaperone function. Many secretory proteins, including Hsp16.3 undergo acetylation in vivo. Seven lysine (K) residues (K64, K78, K85, K114, K119, K132 and K136) in Hsp16.3 are acetylated inside pathogen. However, how lysine acetylation affects its structure, chaperone function and pathogen's growth is still elusive. We examined these aspects by executing in vitro chemical acetylation (acetic anhydride modification) and by utilizing a lysine acetylation mimic mutant (Hsp16.3-K64Q/K78Q/K85Q/K114Q/K119Q/K132Q/K136Q). Far- and near-UV CD measurements revealed that the chemically acetylated proteins(s) and acetylation mimic mutant has altered secondary and tertiary structure than unacetylated/wild-type protein. The chemical modification and acetylation mimic mutation also disrupted the oligomeric assembly, increased surface hydrophobicity and reduced stability of Hsp16.3, as revealed by GF-HPLC, 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid binding and urea denaturation experiments, respectively. These structural changes collectively led to an enhancement in chaperone function (aggregation and thermal inactivation prevention ability) of Hsp16.3. Moreover, when the H37Rv strain expressed the acetylation mimic mutant protein, its growth was slower in comparison to the strain expressing the wild-type/unacetylated Hsp16.3. Altogether, these findings indicated that lysine acetylation improves the chaperone function of Hsp16.3 which may influence pathogen's growth in host environment.


Subject(s)
Bacterial Proteins , Lysine , Molecular Chaperones , Mycobacterium tuberculosis , Lysine/metabolism , Lysine/chemistry , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/genetics , Acetylation , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Hydrophobic and Hydrophilic Interactions , Mutation , Structure-Activity Relationship , Chaperonins
2.
Front Mol Biosci ; 11: 1345158, 2024.
Article in English | MEDLINE | ID: mdl-38545419

ABSTRACT

Prokaryotic deacetylases are classified into nicotinamide adenine dinucleotide (NAD+)-dependent sirtuins and Zn2+-dependent deacetylases. NAD+ is a coenzyme for redox reactions, thus serving as an essential component for energy metabolism. The NAD+-dependent deacetylase domain is quite conserved and well characterized across bacterial species like CobB in Escherichia coli and Salmonella, Rv1151c in Mycobacterium, and SirtN in Bacillus subtilis. E. coli CobB is the only bacterial deacetylase with a known crystal structure (PDB ID: 1S5P), which has 91% sequence similarity with Salmonella CobB (SeCobB). Salmonella encodes two CobB isoforms, SeCobBS and SeCobBL, with a difference of 37 amino acids in its N-terminal domain (NTD). The hydrophobic nature of NTD leads to the stable oligomerization of SeCobBL. The homology modeling-based predicted structure of SeCobB showed the presence of a zinc-binding motif of unknown function. Tryptophan fluorescence quenching induced by ZnCl2 showed that Zn2+ has a weak interaction with SeCobBS but higher binding affinity toward SeCobBL, which clearly demonstrated the crucial role of NTD in Zn2+ binding. In the presence of Zn2+, both isoforms had significantly reduced thermal stability, and a greater effect was observed on SeCobBL. Dynamic light scattering (DLS) studies reflected a ninefold increase in the scattering intensity of SeCobBL upon ZnCl2 addition in contrast to an ∼onefold change in the case of SeCobBS, indicating that the Zn2+ interaction leads to the formation of large particles of SeCobBL. An in vitro lysine deacetylase assay showed that SeCobB deacetylated mammalian histones, which can be inhibited in the presence of 0.25-1.00 mM ZnCl2. Taken together, our data conclusively showed that Zn2+ strongly binds to SeCobBL through the NTD that drastically alters its stability, oligomeric status, and enzymatic activity in vitro.

3.
Subcell Biochem ; 100: 239-267, 2022.
Article in English | MEDLINE | ID: mdl-36301497

ABSTRACT

The regulation of gene expression is a dynamic process that is influenced by both internal and external factors. Alteration in the epigenetic profile is a key mechanism in the regulation process. Epigenetic regulators, such as enzymes and proteins involved in posttranslational modification (PTM), use different cofactors and substrates derived from dietary sources. For example, glucose metabolism provides acetyl CoA, S-adenosylmethionine (SAM), α- ketoglutarate, uridine diphosphate (UDP)-glucose, adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+), and fatty acid desaturase (FAD), which are utilized by chromatin-modifying enzymes in many intermediary metabolic pathways. Any alteration in the metabolic status of the cell results in the alteration of these metabolites, which causes dysregulation in the activity of chromatin regulators, resulting in the alteration of the epigenetic profile. Such long-term or repeated alteration of epigenetic profile can lead to several diseases, like cancer, insulin resistance and diabetes, cognitive impairment, neurodegenerative disease, and metabolic syndromes. Here we discuss the functions of key nutrients that contribute to epigenetic regulation and their role in pathophysiological conditions.


Subject(s)
Histones , Neurodegenerative Diseases , Humans , Histones/metabolism , Epigenesis, Genetic , Neurodegenerative Diseases/genetics , Chromatin , NAD/genetics , NAD/metabolism , Ketoglutaric Acids , Gene Expression
4.
J Biochem ; 171(6): 673-693, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35325168

ABSTRACT

Gram-negative intracellular pathogen Vibrio parahaemolyticus manifests its infection through a series of effector proteins released into the host via the type III secretion system. Most of these effector proteins alter signalling pathways of the host to facilitate survival and proliferation of bacteria inside host cells. Here, we report V. parahaemolyticus (serotype O3:K6) infection-induced histone deacetylation in host intestinal epithelial cells, particularly deacetylation of H3K9, H3K56, H3K18 and H4K16 residues. We found a putative NAD+-dependent deacetylase, vp1524 (vpCobB) of V. parahaemolyticus, was overexpressed during infection. Biochemical assays revealed that Vp1524 is a functional NAD+-dependent Sir2 family deacetylase in vitro, which was capable of deacetylating acetylated histones. Furthermore, we observed that vp1524 is expressed and localized to the nuclear periphery of the host cells during infection. Consequently, Vp1524 translocated to nuclear compartments of transfected cells, deacetylated histones, specifically causing deacetylation of those residues (K56, K16, K18) associated with V. parahaemolyticus infection. This infection induced deacetylation resulted in transcriptional repression of several host genes involved in epigenetic regulation, immune response, autophagy etc. Thus, our study shows that a V. parahaemolyticus lysine deacetylase Vp1524 is secreted inside the host cells during infection, modulating host gene expression through histone deacetylation.


Subject(s)
Group III Histone Deacetylases/metabolism , Vibrio parahaemolyticus , Epigenesis, Genetic , Histones/metabolism , Immunity , NAD/genetics , NAD/metabolism , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/metabolism
5.
Cancers (Basel) ; 13(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34680394

ABSTRACT

Retinoblastoma is usually initiated by biallelic RB1 gene inactivation. In addition, MYCN copy number alterations also contribute to RB pathogenesis. However, MYCN expression, its role in disease progression and correlation with RB histological risk factors are not well understood. We studied the expression of MYCN in enucleated RB patient specimens by immunohistochemistry. MYCN is overexpressed in RB compared to control retina. Our microarray gene expression analysis followed by qRT-PCR validation revealed that genes involved in glucose metabolism and migration are significantly downregulated in MYCN knockdown cells. Further, targeting MYCN in RB cells using small molecule compounds or shRNAs led to decreased cell survival and migration, increased apoptosis and cell cycle arrest, suggesting that MYCN inhibition can be a potential therapeutic strategy. We also noted that MYCN inhibition results in reduction in glucose uptake, lactate production, ROS levels and gelatinolytic activity of active-MMP9, explaining a possible mechanism of MYCN in RB. Taking clues from our findings, we tested a combination treatment of RB cells with carboplatin and MYCN inhibitors to find enhanced therapeutic efficacy compared to single drug treatment. Thus, MYCN inhibition can be a potential therapeutic strategy in combination with existing chemotherapy drugs to restrict tumor cell growth in RB.

6.
Clin Ophthalmol ; 15: 3027-3039, 2021.
Article in English | MEDLINE | ID: mdl-34285469

ABSTRACT

PURPOSE: The key differences in cell death mechanisms in the trabecular meshwork (TM) in adult moderate and severe primary glaucoma remain still unanswered. This study explored key differences in cell death mechanisms in the trabecular meshwork (TM) in adult moderate and severe primary glaucoma. DESIGN: In-vitro laboratory study on surgical specimens and primary cell lines. METHODS: Select cell death-related proteins differentially expressed on mass spectrometric analysis in ex-vivo dissected TM specimens patients with severe adult primary open-angle (POAG) or angle-closure glaucoma (PACG) compared to controls (cadaver donor cornea) were validated for temporal changes in cell death-related gene expression on in-vitro primary human TM cell culture after 48 hours (moderate) or 72 hours (severe) oxidative stress with H2O2 (400-1000 uM concentration). These were compared with histone modifications after oxidative stress in human TM (HTM) culture and peripheral blood of patients with moderate and severe glaucoma. RESULTS: Autophagy-related proteins seemed to be the predominant cell-death mechanism over apoptosis in ex-vivo dissected TM specimens in severe glaucoma. Analyzing HTM cell gene expression at 48 hours and 72 hours of oxidative stress, autophagy genes were up-regulated at 48-72 hours of exposure in contrast to apoptosis-related genes, showing down-regulation at 72 hours. There was associated increased expression of H3K14ac in HTM after 72 hours of oxidative stress and in peripheral blood of severe POAG and PACG. CONCLUSION: A preference of autophagy over apoptosis may underlie stage transition from moderate to severe glaucoma in the trabecular meshwork or peripheral blood, which may be tightly regulated by epigenetic modulators.

7.
J Bacteriol ; 203(19): e0023121, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34251868

ABSTRACT

Protein lysine acetylation is a conserved posttranslational modification that modulates several cellular processes. Protein acetylation and its physiological implications in eukaryotes are well understood; however, its role in bacteria is emerging. Lysine acetylation in bacteria is fine-tuned by the concerted action of lysine acetyltransferases (KATs), protein deacetylases (KDACs), and metabolic intermediates, e.g., acetyl coenzyme A (Ac-CoA) and acetyl phosphate (AcP). AcP-mediated nonenzymatic acetylation is predominant in bacteria due to its high acetyl transfer potential, whereas enzymatic acetylation by bacterial KATs (bKATs) is considered less abundant. SePat, the first bKAT discovered in Salmonella enterica, regulates the activity of the central metabolic enzyme acetyl-CoA synthetase, through its acetylation. Recent studies have highlighted the role of bKATs in stress responses like pH tolerance, nutrient stress, persister cell formation, antibiotic resistance, and pathogenesis. Bacterial genomes encode many putative bKATs of unknown biological function and significance. Detailed characterization of putative and partially characterized bKATs is important to decipher acetylation-mediated regulation in bacteria. Proper synthesis of information about the diverse roles of bKATs is missing to date, which can lead to the discovery of new antimicrobial targets in future. In this review, we provide an overview of the diverse physiological roles of known bKATs and their mode of regulation in different bacteria. We also highlight existing gaps in the literature and present questions that may help clarify the regulatory mechanisms mediated by bKATs in adaptation to a diverse habitat.


Subject(s)
Acetyltransferases/metabolism , Adaptation, Physiological/physiology , Bacteria/enzymology , Bacterial Proteins/metabolism , Acetyltransferases/genetics , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Environment , Gene Expression Regulation, Bacterial/physiology
8.
PLoS One ; 16(4): e0249759, 2021.
Article in English | MEDLINE | ID: mdl-33914756

ABSTRACT

PURPOSE: Pseudoexfoliation (PXF) is a unique form of glaucoma characterized by accumulation of exfoliative material in the eyes. Changes in tear profile in disease stages may give us insights into molecular mechanisms involved in causing glaucoma in the eye. METHODS: All patients were categorized into three main categories; pseudoexfoliation (PXF), pseudoexfoliation glaucoma (PXG) and cataract, which served as control. Cytokines, transforming growth factor ß1 (TGFß1), matrix metalloproteases (MMPs) and fibronectin (FN1) were assessed with multiplex bead assay, enzyme-linked immunosorbent assay (ELISA), gelatin zymography, and immunohistochemistry (IHC) respectively in different ocular tissues such as tears, tenon's capsule, aqueous humor (AH) and serum samples of patients with PXF stages. RESULTS: We found that TGFß1, MMP-9 and FN1 protein expression were upregulated in tears, tenon's capsule and AH samples in PXG compared to PXF, though the MMP-9 protein activity was downregulated in PXG compared with control or PXF. We have also found that in PXG tears sample the fold change of TGF-α (Transforming Growth Factor-α), MDC (Macrophage Derived Chemokine), IL-8 (Interleukin-8), VEGF (Vascular Endothelial Growth Factor) were significantly downregulated and the levels of GM-CSF (Granulocyte Macrophage Colony Stimulating Factor), IP-10 (Interferon- γ produced protein-10) were significant upregulated. While in AH; IL-6 (Interleukin-6), IL-8, VEGF, IFN-a2 (Interferon- α2), GRO (Growth regulated alpha protein) levels were found lower and IL1a (Interleukin-1α) level was higher in PXG compared to PXF. And in serum; IFN-a2, Eotaxin, GM-CSF, Fractalkine, IL-10 (Interleukin-10), IL1Ra (Interleukin-1 receptor antagonist), IL-7 (Interleukin-7), IL-8, MIP1ß (Macrophage Inflammatory Protein-1ß), MCP-1 (Monocyte Chemoattractant Protein-1) levels were significantly upregulated and PDGF-AA (Platelet Derived Growth Factor-AA) level was downregulated in the patients with PXG compared to PXF. CONCLUSIONS: Altered expression of these molecules in tears may therefore be used as a signal for onset of glaucoma or for identifying eyes at risk of developing glaucoma in PXF.


Subject(s)
Biomarkers/metabolism , Cytokines/metabolism , Exfoliation Syndrome/metabolism , Eye/metabolism , Matrix Metalloproteinases/metabolism , Tears/metabolism , Transforming Growth Factor beta1/metabolism , Exfoliation Syndrome/diagnosis , Exfoliation Syndrome/pathology , Eye/pathology , Female , Humans , Male , Middle Aged
9.
PLoS One ; 13(8): e0201740, 2018.
Article in English | MEDLINE | ID: mdl-30080906

ABSTRACT

PURPOSE: Prostaglandin analogues (PGA's) are the mainstay and first line of treatment in current glaucoma practise. Though latanoprost and bimatoprost are the most commonly used PGA's with minimal side effects at lower concentrations like bimaotoprost 0.01%, direct comparison of their cytokine/MMP profile in tears has not been evaluated earlier. The study intends to ascribe PGA to the upregulation of MMPs, Cytokines and Chemokines mediating varied pathways to result in side effects of the drugs. METHODS: Tear sample collection was done from outer canthus of 30 eyes of 30 patients (primary open angle glaucoma (n = 26 and n' = 20), normal tension glaucoma (n = 4 and n' = 10), in latanoprost (n) 0.005% and bimatoprost (n') 0.01% group respectively, with a mean age of 62±10.5 years) on >6 months of PGA use using Tear floTM Schirmer filter strip. Tear samples from 30 eyes of 30 cataract patients without drug treatment were used as the control. Gelatinolytic activity of MMP-9 and MMP-2 were examined by substrate gelatine zymography MMP-1 and TIMP-1 concentrations from tears samples with PGAs were evaluated by ELISA while cytokine concentration in the eluted tears was evaluated using a convenient bioplex kit assay (Milliplex MAP kit, HCYTMAG-60K-PX41, Millipore, Massachusetts, United States). The mean duration of use of PGA in both groups did not differ significantly (median 1.3 years in bimatoprost and 1.1 years in latanoprost eyes, p = 0.6). RESULTS: The tear MMP-9 expression was higher in eyes receiving latanoprost while the MMP-2 expression was higher in eyes receiving bimatoprost with MMP1 protein levels being higher in the former. Latanoprost treated eyes had marginally elevated tear cytokines involved in tissue remodelling while bimatoprost eyes showed elevated cytokines regulating allergic pathways. CONCLUSION: Differential cytokine and MMP expression indicates differential signalling pathways mediating different cellular effects (evident as clinical and side effects) with the two drugs which can be explored further.


Subject(s)
Antihypertensive Agents/therapeutic use , Bimatoprost/therapeutic use , Latanoprost/therapeutic use , Tears/drug effects , Tears/metabolism , Antihypertensive Agents/adverse effects , Bimatoprost/adverse effects , Biomarkers/metabolism , Cataract/drug therapy , Cataract/metabolism , Cohort Studies , Cytokines/metabolism , Female , Glaucoma, Open-Angle/drug therapy , Glaucoma, Open-Angle/metabolism , Humans , Latanoprost/adverse effects , Male , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Middle Aged
10.
Invest Ophthalmol Vis Sci ; 58(6): BIO106-BIO113, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28586796

ABSTRACT

Purpose: To evaluate the differential expression of tear matrix metalloproteinases (MMP) 2 and 9 in of patients with various forms of glaucoma. Methods: Tear samples were collected with a Schirmer's strip from 148 eyes of 113 patients (medically naïve patients with primary open-angle [POAG] or angle closure glaucoma [PACG] and those with pseudoexfoliation syndrome [PXF] or glaucoma [PXG]). These were compared to patients undergoing cataract surgery (controls) for this cross-sectional study. Functional activities of tear MMP-9 and MMP-2 were analyzed by gelatin zymography. Tenon's capsules (n = 15) were harvested from the inferior quadrant in those undergoing cataract surgery and protein expression of MMP-9 was analyzed by immunohistochemistry (IHC). Hydrogen peroxide (H2O2) stress-induced effects on in vitro activities of MMP-9 in human trabecular meshwork (HTM) cells were analyzed. Results: The MMP-9 activity in tears was increased significantly in POAG, (n = 27), PACG (n = 24), and PXF (n = 40) eyes compared to controls (n = 35), and was increased significantly in eyes with glaucoma compared to moderate/severe glaucoma (P < 0.001). The MMP-9 expression was significantly lower in PXG (n = 22) eyes. Immunohistochemistry of Tenon's capsule revealed increased expression of MMP-9 in primary glaucoma eyes. Increased MMP-9 activity was seen in in vitro by gelatin zymography and was confirmed by Western and immunofluorescent assay on HTM upon 800 and 1000 µM H2O2-induced stress for 2 to 3 hours with approximately 80% cell death. Conclusions: Increased tear MMP-9 activity in early glaucoma and pseudoexfoliation syndrome suggesting activation of extracellular matrix (ECM) degradation can be used as a tear-based predictive biomarker. Decreased expression in advanced stages suggests exhaustion of the degradation response.


Subject(s)
Glaucoma/enzymology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Tears/enzymology , Aged , Analysis of Variance , Blotting, Western , Case-Control Studies , Cross-Sectional Studies , Exfoliation Syndrome/enzymology , Female , Humans , Immunohistochemistry , Male , Middle Aged , Tenon Capsule/enzymology , Trabecular Meshwork/enzymology
11.
Clin Epigenetics ; 6(1): 12, 2014.
Article in English | MEDLINE | ID: mdl-25075227

ABSTRACT

BACKGROUND: There is renewed interest towards understanding the host-pathogen interaction in the light of epigenetic modifications. Although epithelial tissue is the major site for host-pathogen interactions, there is handful of studies to show how epithelial cells respond to pathogens. Bacterial infection in the mammary gland parenchyma induces local and subsequently systemic inflammation that results in a complex disease called mastitis. Globally Staphylococcus aureus is the single largest mastitis pathogen and the infection can ultimately result in either subclinical or chronic and sometimes lifelong infection. RESULTS: In the present report we have addressed the differential inflammatory response in mice mammary tissue during intramammary infection and the altered epigenetic context induced by two closely related strains of S. aureus, isolated from field samples. Immunohistochemical and immunoblotting analysis showed strain specific hyperacetylation at histone H3K9 and H3K14 residues. Global gene expression analysis in S. aureus infected mice mammary tissue revealed a selective set of upregulated genes that significantly correlated with the promoter specific, histone H3K14 acetylation. Furthermore, we have identified several differentially expressed known miRNAs and 3 novel miRNAs in S. aureus infected mice mammary tissue by small RNA sequencing. By employing these gene expression data, an attempt has been made to delineate the gene regulatory networks in the strain specific inflammatory response. Apparently, one of the isolates of S. aureus activated the NF-κB signaling leading to drastic inflammatory response and induction of immune surveillance, which could possibly lead to rapid clearance of the pathogen. The other strain repressed most of the inflammatory response, which might help in its sustenance in the host tissue. CONCLUSION: Taken together, our studies shed substantial lights to understand the mechanisms of strain specific differential inflammatory response to S. aureus infection during mastitis. In a broader perspective this study also paves the way to understand how certain bacteria can evade the immune surveillance and cause sustained infection while others are rapidly cleared from the host body.

12.
ACS Chem Biol ; 8(6): 1311-23, 2013.
Article in English | MEDLINE | ID: mdl-23570531

ABSTRACT

PCAF (KAT2B) belongs to the GNAT family of lysine acetyltransferases (KAT) and specifically acetylates the histone H3K9 residue and several nonhistone proteins. PCAF is also a transcriptional coactivator. Due to the lack of a PCAF KAT-specific small molecule inhibitor, the exclusive role of the acetyltransferase activity of PCAF is not well understood. Here, we report that a natural compound of the hydroxybenzoquinone class, embelin, specifically inhibits H3Lys9 acetylation in mice and inhibits recombinant PCAF-mediated acetylation with near complete specificity in vitro. Furthermore, using embelin, we have identified the gene networks that are regulated by PCAF during muscle differentiation, further highlighting the broader regulatory functions of PCAF in muscle differentiation in addition to the regulation via MyoD acetylation.


Subject(s)
Acetylation/drug effects , Benzoquinones/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism , Animals , Benzoquinones/chemistry , Cell Differentiation , Cell Line , Gene Expression Regulation/drug effects , HEK293 Cells , Histones/metabolism , Humans , Mice , MyoD Protein/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Recombinant Proteins/metabolism
13.
Subcell Biochem ; 61: 567-96, 2013.
Article in English | MEDLINE | ID: mdl-23150268

ABSTRACT

The recent developments in the field of epigenetics have changed the way the covalent modifications were perceived from mere chemical tags to important biological recruiting platforms as well as decisive factors in the process of transcriptional regulation and gene expression. Over the years, the parallel investigations in the area of epigenetics and disease have also shown the significance of the epigenetic modifications as important regulatory nodes that exhibit dysfunction in disease states. In the present scenario where epigenetic therapy is also being considered at par with the conventional therapeutic strategies, this article reviews the role of histone acetylation as an epigenetic mark involved in different biological processes associated with normal as well as abnormal gene expression states, modulation of this acetylation by small molecules and warrants the possibility of acetylation as a therapeutic target.


Subject(s)
Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/therapeutic use , Histones/metabolism , Protein Processing, Post-Translational/drug effects , Acetylation , Animals , Gene Expression Regulation/drug effects , Genetic Predisposition to Disease , Humans , Phenotype , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription, Genetic/drug effects
14.
Epigenetics ; 7(5): 492-501, 2012 May.
Article in English | MEDLINE | ID: mdl-22419123

ABSTRACT

Mastitis is a multietiological complex disease, defined as inflammation of parenchyma of mammary glands. Bacterial infection is the predominant cause of mastitis, though fungal, viral and mycoplasma infections also have been reported. Based on the severity of the disease, mastitis can be classified into subclinical, clinical and chronic forms. Bacterial pathogens from fresh cow milk were isolated and classified by standard microbiological tests and multiplex PCR. Epidemiological studies have shown that Escherichia coli is the second largest mastitis pathogen after Staphylococcus aureus in India. Based on Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR profile and presence of virulence genes, a field isolate of E. coli was used for intramammary inoculation in lactating mice. Histopathological examination of hematoxylin and eosin stained sections showed severe infiltration of polymorphonuclear neutrophils, mononuclear inflammatory cells in the alveolar lumen and also in interstitial space, and necrosis of alveolar epithelial cells after 24 h. Western blot and immunohistochemical analysis of mice mammary tissues showed significant hyperacetylation at histone H3K14 residue of both mammary epithelial cells and migrated inflammatory cells. Quantitative real-time PCR and genome-wide gene expression profile in E. coli infected mice mammary tissue revealed differential expression of genes related to inflammation, immunity, antimicrobial peptide expression, acute phase response and oxidative stress response. Expression of milk proteins was also suppressed. ChIP assay from paraffinized tissues showed selective enrichment of acetylated histone H3K14 and H4K8 at the promoters of overexpressed genes. These data suggest that E. coli infection in mice mammary tissue leads to histone hyperacetylation at the promoter of immune genes, which is a pre-requisite for the expression of inflammatory genes in order to mount a drastic immune response.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli/pathogenicity , Histones/metabolism , Mammary Glands, Animal/microbiology , Mastitis/microbiology , Acetylation , Animals , Blotting, Western , Chromatin Immunoprecipitation , Epithelial Cells/immunology , Epithelial Cells/microbiology , Epithelial Cells/pathology , Escherichia coli/genetics , Escherichia coli/immunology , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Female , Gene Expression Regulation , Histones/genetics , Immunohistochemistry , Lactation/metabolism , Mastitis/immunology , Mice , Milk/immunology , Milk/metabolism , Milk/microbiology , Neutrophils/immunology , Neutrophils/microbiology , Neutrophils/pathology , Oxidative Stress , Promoter Regions, Genetic , Real-Time Polymerase Chain Reaction , Virulence Factors/genetics , Virulence Factors/immunology , Virulence Factors/metabolism
15.
Biochem Biophys Res Commun ; 380(4): 763-8, 2009 Mar 20.
Article in English | MEDLINE | ID: mdl-19338749

ABSTRACT

Acyl carrier protein (ACP), an abundant protein in every cell, plays a central role in a number of metabolic processes requiring acyl group transfer. Conformational flexibility while crucial for its function remains substantially unaddressed. By dual polarization interferometry we establish correlation between the chain length of aliphatic groups covalently linked to Escherichia coli and Plasmodium falciparum ACP and their respective partial molar volumes in solution which helps to subserve the aforesaid goal.


Subject(s)
Acyl Carrier Protein/metabolism , Acyl Carrier Protein/chemistry , Acylation , Animals , Escherichia coli/metabolism , Interferometry , Plasmodium falciparum/metabolism , Protein Conformation
16.
FEBS J ; 275(19): 4756-66, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18721141

ABSTRACT

The type II fatty acid synthase (FAS) pathway of Plasmodium falciparum is a validated unique target for developing novel antimalarials, due to its intrinsic differences from the typeI pathway operating in humans. beta-Ketoacyl acyl carrier protein (ACP) reductase (FabG) performs the NADPH-dependent reduction of beta-ketoacyl-ACP to beta-hydroxyacyl-ACP, the first reductive step in the elongation cycle of fatty acid biosynthesis. In this article, we report intensive studies on the direct interactions of Plasmodium FabG and Plasmodium ACP in solution, in the presence and absence of its cofactor, NADPH, by monitoring the change in intrinsic fluorescence of P.falciparum FabG (PfFabG) and by surface plasmon resonance. To address the issue of the importance of the residues involved in strong, specific and stoichiometric binding of PfFabG to P.falciparum ACP (PfACP), we mutated Arg187, Arg190 and Arg230 of PfFabG. The activities of the mutants were assessed using both an ACP-dependent and an ACP-independent assay. The affinities of all the PfFabG mutants for acetoacetyl-ACP (the physiological substrate) were reduced to different extents as compared to wild-type PfFabG, but were equally active in biochemical assays with the substrate analog acetoacetyl-CoA. Kinetic analysis and studies of direct binding between PfFabG and PfACP confirmed the identification of Arg187 and Arg230 as critical residues for the PfFabG-PfACP interactions. Our studies thus reveal the significance of the positively charged/hydrophobic patch located adjacent to the active site cavities of PfFabG for interactions with PfACP.


Subject(s)
Acyl Carrier Protein/metabolism , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Plasmodium falciparum/enzymology , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase , Alcohol Oxidoreductases/metabolism , Amino Acid Sequence , Animals , Arginine/metabolism , Binding Sites , Kinetics , Molecular Sequence Data , NADP/metabolism , Plasmodium falciparum/metabolism , Sequence Alignment , Surface Plasmon Resonance
17.
FEBS J ; 274(13): 3313-26, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17555524

ABSTRACT

The unfolding pathways of the two forms of Plasmodium falciparum acyl carrier protein, the apo and holo forms, were determined by guanidine hydrochloride-induced denaturation. Both the apo form and the holo form displayed a reversible two-state unfolding mechanism. The analysis of isothermal denaturation data provides values for the conformational stability of the two proteins. Although both forms have the same amino acid sequence, and they have similar secondary structures, it was found that the - DeltaG of unfolding of the holo form was lower than that of the apo form at all the temperatures at which the experiments were done. The higher stability of the holo form can be attributed to the number of favorable contacts that the 4'-phosphopantetheine group makes with the surface residues by virtue of a number of hydrogen bonds. Furthermore, there are several hydrophobic interactions with 4'-phosphopantetheine that firmly maintain the structure of the holo form. We show here for the first time that the interactions between 4'-phosphopantetheine and the polypeptide backbone of acyl carrier protein stabilize the protein. As Plasmodium acyl carrier protein has a similar secondary structure to the other acyl carrier proteins and acyl carrier protein-like domains, the detailed biophysical characterization of Plasmodium acyl carrier protein can serve as a prototype for the analysis of the conformational stability of other acyl carrier proteins.


Subject(s)
Acyl Carrier Protein/chemistry , Pantetheine/analogs & derivatives , Plasmodium falciparum/metabolism , Acyl Carrier Protein/metabolism , Animals , Biophysics/methods , Dose-Response Relationship, Drug , Hydrogen Bonding , Molecular Conformation , Pantetheine/chemistry , Peptides/chemistry , Protein Conformation , Protein Denaturation , Protein Structure, Secondary , Protein Structure, Tertiary , Temperature , Thermodynamics
18.
Antimicrob Agents Chemother ; 51(7): 2552-8, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17485508

ABSTRACT

The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (beta-ketoacyl-ACP synthase), FabG (beta-ketoacyl-ACP reductase), FabZ (beta-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (-)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.


Subject(s)
Fatty Acid Synthases/antagonists & inhibitors , Fatty Acid Synthases/analysis , Mass Spectrometry/methods , Plasmodium falciparum/enzymology , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Cerulenin/pharmacology , Fatty Acid Synthases/isolation & purification , Models, Biological , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Triclosan/pharmacology
19.
Biochem Biophys Res Commun ; 330(4): 1019-26, 2005 May 20.
Article in English | MEDLINE | ID: mdl-15823545

ABSTRACT

Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis by transferring the acyl groups from one enzyme to another for the completion of the fatty acid synthesis cycle. Holo-ACP is the obligatory substrate for the synthesis of acyl-ACPs which act as the carrier and donor for various metabolic reactions. Despite its interactions with numerous proteins in the cell, its mode of interaction is poorly understood. Here, we report the over-expression of PfACP in minimal medium solely in its holo form and in high yield. Expression in minimal media provides a means to isotopically label PfACP for high resolution multi-nuclear and multi-dimensional NMR studies. Indeed, the proton-nitrogen correlated NMR spectrum exhibits very high chemical shift dispersion and resolution. We also show that holo-PfACP thus expressed is amenable to acylation reactions using Escherichia coli acyl-ACP synthetase as well as by standard chemical methods.


Subject(s)
Acyl Carrier Protein/biosynthesis , Plasmodium falciparum/metabolism , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/genetics , Animals , Carbon Isotopes , Carbon-Sulfur Ligases/biosynthesis , Circular Dichroism , Escherichia coli/genetics , Escherichia coli/metabolism , Histidine/chemistry , Isotope Labeling , Nitrogen Isotopes , Nuclear Magnetic Resonance, Biomolecular , Protein Folding , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
20.
J Biol Chem ; 278(46): 45661-71, 2003 Nov 14.
Article in English | MEDLINE | ID: mdl-12930838

ABSTRACT

The emergence of drug-resistant forms of Plasmodium falciparum emphasizes the need to develop new antimalarials. In this context, the fatty acid biosynthesis (FAS) pathway of the malarial parasite has recently received a lot of attention. Due to differences in the fatty acid biosynthesis systems of Plasmodium and man, this pathway is a good target for the development of new and selective therapeutic drugs directed against malaria. In continuation of these efforts we report cloning and overexpression of P. falciparum beta-hydroxyacyl-acyl carrier protein (ACP) dehydratase (PffabZ) gene that codes for a 17-kDa protein. The enzyme catalyzes the dehydration of beta-hydroxyacyl-ACP to trans-2-acyl-ACP, the third step in the elongation phase of the FAS cycle. It has a Km of 199 microM and kcat/Km of 80.4 m-1 s-1 for the substrate analog beta-hydroxybutyryl-CoA but utilizes crotonoyl-CoA, the product of the reaction, more efficiently (Km = 86 microM, kcat/Km = 220 m-1 s-1). More importantly, we also identify inhibitors (NAS-91 and NAS-21) for the enzyme. Both the inhibitors prevented the binding of crotonoyl-CoA to PfFabZ in a competitive fashion. Indeed these inhibitors compromised the growth of P. falciparum in cultures and inhibited the parasite fatty acid synthesis pathway both in cell-free extracts as well as in situ. We modeled the structure of PfFabZ using Escherichia coli beta-hydroxydecanoyl thioester dehydratase (EcFabA) as a template. We also modeled the inhibitor complexes of PfFabZ to elucidate the mode of binding of these compounds to FabZ. The discovery of the inhibitors of FabZ, reported for the first time against any member of this family of enzymes, essential to the type II FAS pathway opens up new avenues for treating a number of infectious diseases including malaria.


Subject(s)
Hydro-Lyases/antagonists & inhibitors , Hydro-Lyases/chemistry , Plasmodium falciparum/enzymology , Amino Acid Sequence , Animals , Catalysis , Cell-Free System , Chromatography, Gel , Chromatography, High Pressure Liquid , Cloning, Molecular , Dose-Response Relationship, Drug , Drug Resistance , Escherichia coli/enzymology , Fatty Acids/metabolism , Kinetics , Light , Models, Biological , Models, Chemical , Models, Molecular , Molecular Sequence Data , Plasmids/metabolism , Protein Binding , Scattering, Radiation , Sequence Homology, Amino Acid , Spectrophotometry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...