Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(21): 9527-9538, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38217471

ABSTRACT

U(IV) cyclometalated complexes have shown rich reactivity, but their low oxidation state analogues still remain rare. Herein, we report the isolation of [K(2.2.2-cryptand)][UIII{N(SiMe3)2}2(κ2-C,N-CH2SiMe2NSiMe3)], 1, from the reduction of [UIII{N(SiMe)2}3] with KC8 and 2.2.2-cryptand at room temperature. Cyclic voltammetry studies demonstrate that 1 has a reduction potential similar to that of the previously reported [K(2.2.2-cryptand)][UII{N(SiMe)2}3] (Epc = -2.6 V versus Fc+/0 and Epc = -2.8 V versus Fc+/0, respectively). Complex 1, indeed, shows similar reducing abilities upon reactions with 4,4'-bipyridine, 2,2'-bipyridine, and 1-azidoadamantane. Interestingly, 1 was also found to be the first example of a mononuclear U(III) complex that is capable of reducing pyridine. In addition, it is shown that a wide variety of substrates can be inserted into the U-C bond, forming new U(III) metallacycles. These results highlight that cyclometalated U(III) complexes can serve as versatile precursors for a broad range of reactivity and for assembling a variety of novel chemical architectures.

2.
Angew Chem Int Ed Engl ; 62(23): e202304051, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37015011

ABSTRACT

Herein, we report the redox reactivity of a multimetallic uranium complex supported by triphenylsiloxide (-OSiPh3 ) ligands, where we show that low valent synthons can be stabilized via an unprecedented mechanism involving intramolecular ligand migration. The two- and three-electron reduction of the oxo-bridged diuranium(IV) complex [{(Ph3 SiO)3 (DME)U}2 (µ-O)], 4, yields the formal "UII /UIV ", 5, and "UI /UIV ", 6, complexes via ligand migration and formation of uranium-arene δ-bond interactions. Remarkably, complex 5 effects the two-electron reductive coupling of pyridine affording complex 7, which demonstrates that the electron-transfer is accompanied by ligand migration, restoring the original ligand arrangement found in 4. This work provides a new method for controlling the redox reactivity in molecular complexes of unstable, low-valent metal centers, and can lead to the further development of f-elements redox reactivity.

3.
Chem Sci ; 13(38): 11294-11303, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36320571

ABSTRACT

Radical-bridged diuranium complexes are desirable for their potential high exchange coupling and single molecule magnet (SMM) behavior, but remain rare. Here we report for the first time radical-bridged diuranium(iv) and diuranium(iii) complexes. Reaction of [U{N(SiMe3)2}3] with 2,2'-bipyrimidine (bpym) resulted in the formation of the bpym-bridged diuranium(iv) complex [{((Me3Si)2N)3UIV}2(µ-bpym2-)], 1. Reduction with 1 equiv. KC8 reduces the complex, affording [K(2.2.2-cryptand)][{((Me3Si)2N)3U}2(µ-bpym)], 2, which is best described as a radical-bridged UIII-bpym˙--UIII complex. Further reduction of 1 with 2 equiv. KC8, affords [K(2.2.2-cryptand)]2[{((Me3Si)2N)3UIII}2(µ-bpym2-)], 3. Addition of AgBPh4 to complex 1 resulted in the oxidation of the ligand, yielding the radical-bridged complex [{((Me3Si)2N)3UIV}2(µ-bpym˙-)][BPh4], 4. X-ray crystallography, electrochemistry, susceptibility data, EPR and DFT/CASSCF calculations are in line with their assignments. In complexes 2 and 4 the presence of the radical-bridge leads to slow magnetic relaxation.

4.
Chimia (Aarau) ; 76(4): 303-307, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-38069768

ABSTRACT

Complexes of uranium in low oxidation state have shown the ability of activating non-reactive small molecules such as N2. However, the multi-electron transfer required for such activation, remains limited in uranium chemistry. Here, we review our recent research on the use of different strategies to overcome this issue, which has led to the isolation of a diuranium(ɪɪɪ) bridging oxide complex that reacts as a U(ɪɪ) synthon able to effect one-electron transfer per uranium center to N-heterocycles and multi-electron transfer to diphenylacetylene and azobenzene. We also showed that a closely related molecular U(ɪɪ) complex effects the same reactions providing the first unambiguous example of a monouranium four-electron transfer.

5.
Chem Sci ; 12(17): 6153-6158, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33996013

ABSTRACT

The redox chemistry of uranium is dominated by single electron transfer reactions while single metal four-electron transfers remain unknown in f-element chemistry. Here we show that the oxo bridged diuranium(iii) complex [K(2.2.2-cryptand)]2[{((Me3Si)2N)3U}2(µ-O)], 1, effects the two-electron reduction of diphenylacetylene and the four-electron reduction of azobenzene through a masked U(ii) intermediate affording a stable metallacyclopropene complex of uranium(iv), [K(2.2.2-cryptand)][U(η 2-C2Ph2){N(SiMe3)2}3], 3, and a bis(imido)uranium(vi) complex [K(2.2.2-cryptand)][U(NPh)2{N(SiMe3)2}3], 4, respectively. The same reactivity is observed for the previously reported U(ii) complex [K(2.2.2-cryptand)][U{N(SiMe3)2}3], 2. Computational studies indicate that the four-electron reduction of azobenzene occurs at a single U(ii) centre via two consecutive two-electron transfers and involves the formation of a U(iv) hydrazide intermediate. The isolation of the cis-hydrazide intermediate [K(2.2.2-cryptand)][U(N2Ph2){N(SiMe3)2}3], 5, corroborated the mechanism proposed for the formation of the U(vi) bis(imido) complex. The reduction of azobenzene by U(ii) provided the first example of a "clear-cut" single metal four-electron transfer in f-element chemistry.

6.
Angew Chem Int Ed Engl ; 60(7): 3737-3744, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33085160

ABSTRACT

Oxide is an attractive linker for building polymetallic complexes that provide molecular models for metal oxide activity, but studies of these systems are limited to metals in high oxidation states. Herein, we synthesized and characterized the molecular and electronic structure of diuranium bridged UIII /UIV and UIII /UIII complexes. Reactivity studies of these complexes revealed that the U-O bond is easily broken upon addition of N-heterocycles resulting in the delivery of a formal equivalent of UIII and UII , respectively, along with the uranium(IV) terminal-oxo coproduct. In particular, the UIII /UIII oxide complex effects the reductive coupling of pyridine and two-electron reduction of 4,4'-bipyridine affording unique examples of diuranium(III) complexes bridged by N-heterocyclic redox-active ligands. These results provide insight into the chemistry of low oxidation state metal oxides and demonstrate the use of oxo-bridged UIII /UIII complexes as a strategy to explore UII reactivity.

7.
Angew Chem Int Ed Engl ; 55(7): 2406-10, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26762546

ABSTRACT

The tuning of metal-metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox-active PNO ligand to Au(I) followed by homoleptic metalation of the NO pocket with Ni(II) affords a unique trinuclear Au-Ni-Au complex. This species features two antiferromagnetically coupled ligand-centered radicals and a double intramolecular d(8)-d(10) interaction, as supported by spectroscopic, single-crystal X-ray diffraction, and computational data. A corresponding cationic dinuclear Au-Ni analogue with a stronger d(8)-d(10) interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au-Ni-Au complex facilitates electrocatalytic C-X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox-active ligand framework, an available coordination site at gold, and the nature of the nickel-gold interaction appear to be essential for this reactivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...