Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pathogens ; 10(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33478174

ABSTRACT

During recent years; Xylella fastidiosa subsp. pauca (Xfp) has spread in Salento causing relevant damage to the olive groves. Measures to contain the spreading of the pathogen include the monitoring of the areas bordering the so-called "infected" zone and the tree eradication in case of positive detection. In order to provide a control strategy aimed to maintain the tree productivity in the infected areas, we further evaluated the in vitro and in planta mid-term effectiveness of a zinc-copper-citric acid biocomplex. The compound showed an in vitro bactericidal activity and inhibited the biofilm formation in representative strains of X. fastidiosa subspecies, including Xfp isolated in Apulia from olive trees. The field mid-term evaluation of the control strategy assessed by quantitative real-time PCR in 41 trees of two olive groves of the "infected" area revealed a low concentration of Xfp over the seasons upon the regular spraying of the biocomplex over 3 or 4 consecutive years. In particular, the bacterial concentration lowered in July and October with respect to March, after six consecutive treatments. The trend was not affected by the cultivar and it was similar either in the Xfp-sensitive cultivars Ogliarola salentina and Cellina di Nardò or in the Xfp-resistant Leccino. Moreover, the scoring of the number of wilted twigs over the seasons confirmed the trend. The efficacy of the treatment in the management of olive groves subjected to a high pathogen pressure is highlighted by the yielded a good oil production.

2.
PLoS One ; 15(5): e0233013, 2020.
Article in English | MEDLINE | ID: mdl-32413086

ABSTRACT

Global trade and climate change are re-shaping the distribution map of pandemic pathogens. One major emerging concern is Xylella fastidiosa, a tropical bacterium recently introduced into Europe from America. In last decades, X. fastidiosa was detected in several European countries. X. fastidiosa is an insect vector-transmitted bacterial plant pathogen associated with severe diseases in a wide range of hosts. X. fastidiosa through a tight coordination of the adherent biofilm and the planktonic states, invades the host systemically. The planktonic phase is correlated to low cell density and vessel colonization. Increase in cell density triggers a quorum sensing system based on mixture of cis 2-enoic fatty acids-diffusible signalling factors (DSF) that promote stickiness and biofilm. The lipidome profile of Olea europaea L. (cv. Ogliarola salentina) samples, collected in groves located in infected zones and uninfected zones was performed. The untargeted analysis of the lipid profiles of Olive Quick Decline Syndrome (OQDS) positive (+) and negative (-) plants showed a clustering of OQDS+ plants apart from OQDS-. The targeted lipids profile of plants OQDS+ and OQDS- identified a shortlist of 10 lipids that increase their amount in OQDS+ and X. fastidiosa positive olive trees. These lipid entities, provided to X. fastidiosa subsp. pauca pure culture, impact on the dual phase, e.g. planktonic ↔ biofilm. This study provides novel insights on OQDS lipid hallmarks and on molecules that might modulate biofilm phase in X. fastidiosa subsp. pauca.


Subject(s)
Lipid Metabolism , Olea/metabolism , Olea/microbiology , Plant Diseases/microbiology , Xylella/physiology , Xylella/pathogenicity , Adhesiveness , Animals , Biofilms/growth & development , Host Microbial Interactions/physiology , Insect Vectors/microbiology , Italy , Lipidomics , Quorum Sensing/physiology
3.
Front Microbiol ; 9: 1839, 2018.
Article in English | MEDLINE | ID: mdl-30154768

ABSTRACT

Lipids, components of the plasma and intracellular membranes as well as of droplets, provide different biological functions related to energy, carbon storage, and stress responses. Bacterial species display diverse membrane composition that changes in response to the different environmental conditions. During plant-pathogen interactions, lipids might have roles in several aspects such as recognition, signal transduction, and downstream responses. Among lipid entities, free fatty acids (FFAs) and their oxidized form, the oxylipins, represent an important class of signaling molecules in host-pathogen perception, especially related to virulence and defense. In bacteria, FFAs (e.g., diffusible signaling factors) and oxylipins have a crucial role in modulating motility, biofilm formation, and virulence. In this study, we explore by LC-TOF and LC-MS/MS the lipid composition of Xylella fastidiosa subsp. pauca strain De Donno in pure culture; some specific lipids (e.g., ornithine lipids and the oxylipin 7,10-diHOME), characteristic of other pathogenic bacteria, were revealed. Nicotiana tabacum was used for testing the ability of this pathogen in producing such lipids in the host. Different lipid compounds present a clear distribution pattern within the infected plant tissues compared to the uninfected ones.

4.
J Exp Bot ; 67(6): 1715-29, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26748394

ABSTRACT

Conserved microbe-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) act as danger signals to activate the plant immune response. These molecules are recognized by surface receptors that are referred to as pattern recognition receptors. Oligogalacturonides (OGs), DAMPs released from the plant cell wall homogalacturonan, have also been proposed to act as local signals in the response to wounding. The Arabidopsis Wall-Associated Kinase 1 (WAK1), a receptor of OGs, has been described to form a complex with a cytoplasmic plasma membrane-localized kinase-associated protein phosphatase (KAPP) and a glycine-rich protein (GRP-3) that we find localized mainly in the cell wall and, in a small part, on the plasma membrane. By using Arabidopsis plants overexpressing WAK1, and both grp-3 and kapp null insertional mutant and overexpressing plants, we demonstrate a positive function of WAK1 and a negative function of GRP-3 and KAPP in the OG-triggered expression of defence genes and the production of an oxidative burst. The three proteins also affect the local response to wounding and the basal resistance against the necrotrophic pathogen Botrytis cinerea. GRP-3 and KAPP are likely to function in the phasing out of the plant immune response.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , Membrane Proteins/metabolism , Oligosaccharides/pharmacology , Phosphoprotein Phosphatases/metabolism , Protein Kinases/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Botrytis/drug effects , Botrytis/physiology , Disease Resistance/drug effects , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Mutation/genetics , Pathogen-Associated Molecular Pattern Molecules/metabolism , Pectobacterium/drug effects , Pectobacterium/physiology , Plant Diseases/immunology , Plant Diseases/microbiology , Plants, Genetically Modified , Protein Binding/drug effects , Protein Transport/drug effects , Seedlings/drug effects , Seedlings/genetics
5.
Front Plant Sci ; 5: 470, 2014.
Article in English | MEDLINE | ID: mdl-25278948

ABSTRACT

Plants are continuously exposed to agents such as herbivores and environmental mechanical stresses that cause wounding and open the way to the invasion by microbial pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the tissue and subsequent infection. Plants have evolved constitutive and induced defense mechanisms to properly respond to wounding and prevent infection. The constitutive defenses are represented by physical barriers, i.e., the presence of cuticle or lignin, or by metabolites that act as toxins or deterrents for herbivores. Plants are also able to sense the injured tissue as an altered self and induce responses similar to those activated by pathogen infection. Endogenous molecules released from wounded tissue may act as Damage-Associated Molecular Patterns (DAMPs) that activate the plant innate immunity. Wound-induced responses are both rapid, such as the oxidative burst and the expression of defense-related genes, and late, such as the callose deposition, the accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e., chitinases and gluganases). Typical examples of DAMPs involved in the response to wounding are the peptide systemin, and the oligogalacturonides, which are oligosaccharides released from the pectic component of the cell wall. Responses to wounding take place both at the site of damage (local response) and systemically (systemic response) and are mediated by hormones such as jasmonic acid, ethylene, salicylic acid, and abscisic acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...