Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Fertil Dev ; 33(12): 725-735, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34488937

ABSTRACT

Programmed cell death plays a key role in mammalian development because the morphological events of an organism's formation are dependent on apoptosis. In the mouse development, the first apoptotic waves occur physiologically at the blastocyst stage. Cell number and the mean nucleus to cytoplasm (N/C) ratio increase exponentially throughout subsequent embryo cleavages, while cell volume concurrently decreases from the zygote to blastocyst stage. In this study we tested the hypothesis that reorganisation of the embryo structure by manipulating cell number, the N/C ratio and the cell volume of 2-cell embryos may result in the earlier and more frequent occurrence of apoptosis. The results indicate that doubling ('Aggregates' group) or halving ('Embryos 1/2' group) the initial cell number and modifying embryo volume, ploidy ('Embryos 4n' group) and the N/C ratio ('Embryos 2/1' group) reduce the probability of apoptosis in the resulting embryos. There was a higher probability of apoptosis in the inner cell mass of the blastocyst, but apoptotic cells were never observed at the morula stage in any of the experimental groups. Thus, manipulation of cell number, embryo volume, the N/C ratio and ploidy cause subtle changes in the occurrence of apoptosis, although these are mostly dependent on embryo stage and cell lineage (trophectoderm or inner cell mass), which have the greatest effect on the probability of apoptosis.


Subject(s)
Apoptosis/physiology , Blastocyst/physiology , Embryonic Development/physiology , Animals , Blastocyst/cytology , Cell Count , Embryo Culture Techniques , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...