Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Biochem Mol Biol ; 165: 104061, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151136

ABSTRACT

Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.


Subject(s)
Coleoptera , Weevils , Animals , Coleoptera/metabolism , Weevils/metabolism , Gene Expression Profiling , Terpenes/metabolism , Gene Expression
2.
Front Microbiol ; 13: 980251, 2022.
Article in English | MEDLINE | ID: mdl-36204608

ABSTRACT

Eurasian spruce bark beetle, Ips typographus is a destructive pest of the Norway spruce (Picea abies). Recent outbreaks in Europe have been attributed to global warming and other anthropogenic impacts. Bark beetles are guided by multiple complex olfactory cues throughout their life cycle. Male-produced aggregation pheromones, comprising 2-methyl-3-buten-2-ol and cis-verbenol, have been identified as the most powerful attractants for dispersing conspecifics. In addition to host trees, bark beetles interact with multiple organisms, including symbiotic ophiostomatoid fungi, which may promote beetle colonization success and offspring development. Previously, in a short-distance laboratory assay, we demonstrated that I. typographus adults are attracted to the volatile organic compounds (VOCs) produced by three symbiotic fungi: Grosmannia penicillata, Endoconidiophora polonica, and Leptographium europhioides. Furthermore, the abundant fusel alcohols and their acetates were found to be the most attractive odorants in the fungal VOC profile. In this study, using a long-distance field-trapping experiment, we analyzed the role of fungal VOCs as attractants for dispersing I. typographus. Two types of fungal lures were tested in combination with pheromones in traps: (1) live cultures of fungi grown on potato dextrose agar (PDA) and (2) dispensers containing synthetic fusel alcohols and their acetates in equal proportions. Subsequently, the composition of VOCs emitted from live fungal lures were analyzed. We found that the symbiotic fungi synergistically increased the attraction of beetles to pheromones in field traps and the attractiveness of live fungal lures depended on the fungal load. While one Petri dish with E. polonica, when combined with pheromones synergistically increased trapping efficiency, three Petri dishes with L. europhioides were required to achieve the same. The synthetic mix of fungal fusel alcohols and acetates improved the catch efficiency of pheromones only at a low tested dose. VOC analysis of fungal cultures revealed that all the three fungi produced fusel alcohols and acetates but in variable composition and amounts. Collectively, the results of this study show that, in addition to pheromones, bark beetles might also use volatile cues from their symbiotic fungi to improve tree colonization and reproductive success in their breeding and feeding sites.

3.
Pest Manag Sci ; 78(5): 1992-1999, 2022 May.
Article in English | MEDLINE | ID: mdl-35104043

ABSTRACT

BACKGROUND: Eurasian spruce bark beetles (Ips typographus) use both attractant and anti-attractant semiochemicals to find suitable mature host trees. Trans-4-thujanol is abundant in young, unsuitable spruce trees. Electrophysiological studies have demonstrated its high activity levels, but field data are lacking. RESULTS: Enantioselective GC-MS analysis showed that only (1R,4S)-(+)-trans-4-thujanol was present in Norway spruce bark volatiles. In a factorial design field-trapping experiment, trans-4-thujanol alone was not attractive to Ips typographus. Traps baited with I. typographus' aggregation pheromone and trans-4-thujanol or the known anti-attractant 1,8-cineole caught fewer beetles than those baited with the aggregation pheromone alone. Catches for trans-4-thujanol and 1,8-cineole were dose-dependent. Intermediate doses of trans-4-thujanol and 1,8-cineole had a similar effect. Surprisingly, in contrast to 1,8-cineole and other known Ips anti-attractants, which all inhibit males more strongly than females, the addition of trans-4-thujanol to the aggregation pheromone reduced the attraction of females more. CONCLUSION: The Norway spruce volatile (+)-trans-4-thujanol is a novel I. typographus anti-attractant with potency comparable to the known anti-attractants 1,8-cineole and verbenone, and is more effective for females than for males. Incorporating (+)-trans-4-thujanol into anti-attractant lures could improve protection of trees from mass attack by I. typographus.


Subject(s)
Coleoptera , Picea , Weevils , Animals , Bicyclic Monoterpenes , Coleoptera/physiology , Eucalyptol , Female , Male , Pheromones/analysis , Plant Bark/chemistry , Trees
4.
Front Physiol ; 12: 752768, 2021.
Article in English | MEDLINE | ID: mdl-34777015

ABSTRACT

Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae) is one of the most destructive and economically important forest pests. A better understanding of molecular mechanisms underlying its adaptation to toxic host compounds may unleash the potential for future management of this pest. Gene expression studies could be considered as one of the key experimental approaches for such purposes. A suitable reference gene selection is fundamental for quantitative gene expression analysis and functional genomics studies in I. sexdentatus. Twelve commonly used reference genes in Coleopterans were screened under different experimental conditions to obtain accurate and reliable normalization of gene expression data. The majority of the 12 reference genes showed a relatively stable expression pattern among developmental stages, tissue-specific, and sex-specific stages; however, some variabilities were observed during varied temperature incubation. Under developmental conditions, the Tubulin beta-1 chain (ß-Tubulin) was the most stable reference gene, followed by translation elongation factor (eEF2) and ribosomal protein S3 (RPS3). In sex-specific conditions, RPS3, ß-Tubulin, and eEF2 were the most stable reference genes. In contrast, different sets of genes were shown higher stability in terms of expression under tissue-specific conditions, i.e., RPS3 and eEF2 in head tissue, V-ATPase-A and eEF2 in the fat body, V-ATPase-A and eEF2 in the gut. Under varied temperatures, ß-Tubulin and V-ATPase-A were most stable, whereas ubiquitin (UbiQ) and V-ATPase-A displayed the highest expression stability after Juvenile Hormone III treatment. The findings were validated further using real-time quantitative reverse transcription PCR (RT-qPCR)-based target gene expression analysis. Nevertheless, the present study delivers a catalog of reference genes under varied experimental conditions for the coleopteran forest pest I. sexdentatus and paves the way for future gene expression and functional genomic studies on this species.

5.
Front Microbiol ; 11: 568853, 2020.
Article in English | MEDLINE | ID: mdl-33013799

ABSTRACT

Bark beetles are destructive forest pests considering their remarkable contribution to forest depletion. Their association with fungi is useful against the challenges of survival on the noxious and nutritionally limited substrate, i.e., conifer tissues. Fungal symbionts help the beetles in nutrient acquisition and detoxification of toxic tree secondary metabolites. Although gut is the prime location for food digestion and detoxification, limited information is available on gut-mycobiome of bark beetles. The present study screened the gut-mycobiont from six bark beetles (five Ips and one non-Ips) from Scolytinae subfamily using high-throughput sequencing and explored their putative role in symbiosis with the host insect. Results revealed the predominance of four fungal classes- Sordariomycetes, Saccharomycetes, Eurothiomycetes, and Dothidomycetes in all bark beetles. Apart from these, Agaricomycetes, Leothiomycetes, Incertae sedis Basidiomycota, Tremellomycetes, Lecanoromycetes, and Microbotryomycetes were also documented in different beetles. Five Ips bark beetles share a consortium of core fungal communities in their gut tissues consisting of 47 operational taxonomic units (OTUs) belonging to 19 fungal genera. The majority of these core fungal genera belong to the phylum Ascomycota. LEfSe analysis revealed a set of species-specific fungal biomarkers in bark beetles. The present study identified the gut mycobiont assemblage in bark beetles and their putative ecological relevance. An enriched understanding of bark beetle-fungal symbiosis is not only filling the existing knowledge gap in the field but may also unleash an unforeseen potential for future bark beetle management.

6.
Sci Rep ; 10(1): 18572, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122700

ABSTRACT

Bark beetles often serve as forest damaging agents, causing landscape-level mortality. Understanding the biology and ecology of beetles are important for both, gathering knowledge about important forest insects and forest protection. Knowledge about the bark beetle gut-associated bacteria is one of the crucial yet surprisingly neglected areas of research with European tree-killing bark beetles. Hence, in this study, we survey the gut bacteriome from five Ips and one non-Ips bark beetles from Scolytinae. Results reveal 69 core bacterial genera among five Ips beetles that may perform conserved functions within the bark beetle holobiont. The most abundant bacterial genera from different bark beetle gut include Erwinia, Sodalis, Serratia, Tyzzerella, Raoultella, Rahnella, Wolbachia, Spiroplasma, Vibrio, and Pseudoxanthomonas. Notable differences in gut-associated bacterial community richness and diversity among the beetle species are observed. Furthermore, the impact of sampling location on the overall bark beetle gut bacterial community assemblage is also documented, which warrants further investigations. Nevertheless, our data expanded the current knowledge about core gut bacterial communities in Ips bark beetles and their putative function such as cellulose degradation, nitrogen fixation, detoxification of defensive plant compounds, and inhibition of pathogens, which could serve as a basis for further metatranscriptomics and metaproteomics investigations.


Subject(s)
Bacteria/classification , Coleoptera/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/genetics , Bacteria/metabolism , Coleoptera/metabolism , Ecology , Forests , Nitrogen Fixation , Phylogeny , Trees/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...