Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 14(3)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36976083

ABSTRACT

The goal of this review is to map the current state of biodegradable materials that are used in tissue engineering for a variety of applications. At the beginning, the paper briefly identifies typical clinical indications in orthopedics for the use of biodegradable implants. Subsequently, the most frequent groups of biodegradable materials are identified, classified, and analyzed. To this end, a bibliometric analysis was applied to evaluate the evolution of the scientific literature in selected topics of the subject. The special focus of this study is on polymeric biodegradable materials that have been widely used for tissue engineering and regenerative medicine. Moreover, to outline current research trends and future research directions in this area, selected smart biodegradable materials are characterized, categorized, and discussed. Finally, pertinent conclusions regarding the applicability of biodegradable materials are drawn and recommendations for future research are suggested to drive this line of research forward.

2.
Polymers (Basel) ; 13(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064971

ABSTRACT

Biopolymers have been the most frequently studied class of materials due to their biodegradability, renewability, and sustainability. The main aim of the presented study was to evaluate degradability of the polymer material blend which was immersed in different solutions. The present study included the production of three different mixtures of polylactic acid and polyhydroxybutyrate, each with a different content of triacetin, which was used as a plasticiser. Applying 3D printing technology, two types of cylindrical specimen were produced, i.e., a solid and a porous specimen, and subjected to in vitro natural degradation. The biodegradation process ran for 195 days in three different solutions (saline, phosphate-buffered saline (PBS), and Hank's solution) in stable conditions of 37 °C and a pH of 7.4, while the specimens were kept in an orbital motion to simulate the flow of fluids. The goal was to identify the effects of a solution type, specimen shape and material composition on the biodegradation of the materials. The monitored parameters included changes in the solution quantity absorbed by the specimens; morphological changes in the specimen structure; and mechanical properties. They were measured by compressive testing using the Inspekt5 Table Blue testing device. The experiment revealed that specimen porosity affected the absorption of the solutions. The non-triacetin materials exhibited a higher mechanical resistance to compression than the materials containing a plasticiser. The final result of the experiment indicated that the plasticiser-free specimens exhibited higher values of solution absorption, no formation of block cracks or bubbles, and the pH values of the solutions in which these materials were immersed remained neutral for the entire experiment duration; furthermore, these materials did not reduce pH values down to the alkaline range, as was the case with the solutions with the plasticiser-containing materials. Generally, in applications where high mechanical resistance, earlier degradation, and more stable conditions are required, the use of non-plasticiser materials is recommended.

SELECTION OF CITATIONS
SEARCH DETAIL
...