Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1476(1): 109-28, 2000 Jan 03.
Article in English | MEDLINE | ID: mdl-10606773

ABSTRACT

Steady-state and time-resolved emission spectroscopy were used to study the interaction of Escherichia coli purine nucleoside phosphorylase (PNP) with its specific inhibitors, viz. formycin B (FB), and formycin A (FA) and its N-methylated analogues, N(1)-methylformycin A (m(1)FA), N(2)-methylformycin A (m(2)FA) and N(6)-methylformycin A (m(6)FA), in the absence and presence of phosphate (P(i)). Complex formation led to marked quenching of enzyme tyrosine intrinsic fluorescence, with concomitant increases in fluorescence of FA and m(6)FA, independently of the presence of P(i). Fluorescence of m(1)FA in the complex increased only in the presence of P(i), while the weak fluorescence of FB appeared unaffected, independently of P(i). Analysis of the emission, excitation and absorption spectra of enzyme-ligand mixtures pointed to fluorescence resonance energy transfer (FRET) from protein tyrosine residue(s) to FA and m(6)FA base moieties, as a major mechanism of protein fluorescence quenching. With the non-inhibitor m(2)FA, fluorescence emission and excitation spectra were purely additive. Effects of enzyme-FA, or enzyme-m(6)FA, interactions on nucleoside excitation and emission spectra revealed shifts in tautomeric equilibria of the bound ligands. With FA, which exists predominantly as the N(1)-H tautomer in solution, the proton N(1)-H is shifted to N(2), independently of the presence of P(i). Complex formation with m(6)FA in the absence of P(i) led to a shift of the amino-imino equilibrium in favor of the imino species, and increased fluorescence at 350 nm; by contrast, in the presence of P(i), the equilibrium was shifted in favor of the amino species, accompanied by higher fluorescence at 430 nm, and a higher affinity for the enzyme, with a dissociation constant K(d)=0.5+/-0.1 microM, two orders of magnitude lower than that for m(6)FA in the absence of P(i) (K(d)=46+/-5 microM). The latter was confirmed by analysis of quenching of enzyme fluorescence according to a modified Stern-Volmer model. Fractional accessibility values (f(a)) varied from 0.31 for m(1)FA to 0.70 for FA, with negative cooperative binding of m(1)FA and FB, and non-cooperative binding of FA and m(6)FA. For all nucleoside ligands, the best model describing binding stoichiometry was one ligand per native enzyme hexamer. Fluorescence decays of PNP, FA and their mixtures were best fitted to a sum of two exponential terms, with average lifetimes () affected by their interactions. Complex formation resulted in a 2-fold increase in of FA, and a 2-fold decrease in of enzyme fluorescence. The amplitude of the long-lifetime component also increased, confirming the shift of the tautomeric equilibrium in favor of the N(2)-H species. The findings have been examined in relation to enzyme-nucleoside binding deduced from structural studies.


Subject(s)
Formycins/pharmacology , Purine-Nucleoside Phosphorylase/antagonists & inhibitors , Binding Sites , Enzyme Inhibitors/pharmacology , Escherichia coli , Fluorescence , Formycins/chemistry , Ligands , Mathematics , Molecular Structure , Phosphates , Purine-Nucleoside Phosphorylase/chemistry , Spectrometry, Fluorescence , Time Factors
2.
Biophys Chem ; 63(2-3): 107-18, 1997 Jan 31.
Article in English | MEDLINE | ID: mdl-9108686

ABSTRACT

Steady-state and time-resolved emission spectroscopy was applied to a study of the binary and ternary complexes of pure E. coli purine nucleoside phosphorylase (PNP) with phosphate (Pi; a substrate) and a close non-substrate analogue (sulfate; SA). The quenching of enzyme fluorescence by Pi was bimodal, best described by two modified Stem-Volmer equations fitted independently for "low" (below 0.5 mM Pi) and "high" (above 0.5 mM Pi) ligand concentrations. At Pi > 0.5 mM, binding is characterized by a fortyfold higher dissociation constant (Kd2 = 1.12 +/- 0.10 mM), i.e. by a lower affinity for phosphate, with a sevenfold lower quenching constant and 1.6-fold higher accessibility. By contrast, the binding of SA, and the resultant fluorescence quenching, was unimodal, with Kd = 1.36 +/- 0.07 mM, comparable to the Kd for Pi at "high" Pi, with a total binding capacity of one sulfate or phosphate group per enzyme subunit. SA proved to be a competitive inhibitor of phosphorolysis with Ki = 1.2 +/- 0.2 mM vs. Pi, hence similar to its Kd. SA at a concentration of 5 mM did not affect the Pi affinity at Pi < 0.5 mM, but led to a reduced affinity and twofold higher Pi binding capacities at Pi > 0.5 mM. The resultant fluorescence quenching by Pi decreased at 5 mM SA, with lower Stern-Volmer constant (KSV) and fractional accessibility (fa) values. Increasing concentrations of Pi reduced the enzyme affinity for SA, characterized by a higher Kd. The Hill model showed negative cooperative binding of Pi in the absence and presence of 5 mM SA with Hill coefficients h = 0.60 +/- 0.01 and h = 0.83 +/- 0.07, respectively. SA exhibited non-cooperative binding in the absence of Pi (h = 1.08 +/- 0.01) and negative cooperative binding in the presence of Pi (h < 1). PNP fluorescence decays were best fitted to a sum of two exponentials, with an average lifetime of 2.40 +/- 0.14 ns unchanged on interaction with quenching ligands, and pointing to static quenching. The overall results are relevant to the properties of PNP from various sources, in particular to the design of potent bisubstrate analogue inhibitors.


Subject(s)
Escherichia coli/enzymology , Phosphates/chemistry , Purine-Nucleoside Phosphorylase/chemistry , Sulfates/chemistry , Animals , Cattle , Electrophoresis, Polyacrylamide Gel , Humans , Kinetics , Ligands , Purine-Nucleoside Phosphorylase/antagonists & inhibitors , Purine-Nucleoside Phosphorylase/isolation & purification , Spectrometry, Fluorescence
3.
Photochem Photobiol ; 61(4): 319-24, 1995 Apr.
Article in English | MEDLINE | ID: mdl-7740074

ABSTRACT

We examined the emission spectra of tyrosine- and tryptophan-containing proteins using one-photon (270-310 nm) and two-photon (565-610 nm) excitation. Emission spectra for two-photon excitation of native and denatured human serum albumin and of three purine nucleoside phosphorylases indicated an absence of the tyrosine emission normally seen for one-photon excitation below 290 nm. We examined the one-photon and two-photon excitation spectra of tyrosine-tryptophan mixtures to determine the origin of selective excitation of the tryptophan residues. These results confirmed a short-wavelength shift of the tyrosine two-photon excitation spectrum relative to that of tryptophan, as recently reported by Rehms and Callis (1993) Chem. Phys. Lett. 208, 276-282.


Subject(s)
Proteins/chemistry , Animals , Cattle , Humans , Photochemistry , Photons , Proteins/radiation effects , Purine-Nucleoside Phosphorylase/chemistry , Purine-Nucleoside Phosphorylase/radiation effects , Serum Albumin/chemistry , Serum Albumin/radiation effects , Spectrometry, Fluorescence , Tryptophan/chemistry , Tryptophan/radiation effects , Tyrosine/chemistry , Tyrosine/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...