Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomater Appl ; 28(8): 1264-73, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24105427

ABSTRACT

In this in vitro study, magnesium plates of ZEK100 and MgCa0.8 alloy similar to common titanium alloy osteosynthesis plates were investigated as degradable biomedical materials with a focus on primary stability. Immersion tests were performed in Hank's Balanced Salt Solution at 37. The bending strength of the samples was determined using the four-point bending test according to ISO 9585:1990. The initial strength of the noncorroded ZEK100 plate was 11% greater than that of the MgCa0.8 plate; both were approximately 65% weaker than a titanium plate. The bending strength was determined after 48 and 96 h of immersion in Hank's Balanced Salt Solution; both magnesium alloys decreased by approximately 7% after immersion for 96 h. The degradation rate and the Mg(2+) release of ZEK100 were lower than those of MgCa0.8. Strong pitting and filiform corrosion were observed in the MgCa0.8 samples after 96 h of immersion. The surface of the ZEK100 plates exhibited only small areas of filiform corrosion. The results of this in vitro study indicate that the ZEK100 alloy may be more suitable for biomedical applications.


Subject(s)
Alloys , Biocompatible Materials , Bone Plates , Magnesium , Biomechanical Phenomena , Calcium , Corrosion , Fracture Fixation, Internal/instrumentation , Humans , Materials Testing , Microscopy, Electron, Scanning , Surface Properties
2.
Biomed Eng Online ; 11: 12, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22413949

ABSTRACT

BACKGROUND: In recent years magnesium alloys have been intensively investigated as potential resorbable materials with appropriate mechanical and corrosion properties. Particularly in orthopedic research magnesium is interesting because of its mechanical properties close to those of natural bone, the prevention of both stress shielding and removal of the implant after surgery. METHODS: ZEK100 plates were examined in this in vitro study with Hank's Balanced Salt Solution under physiological conditions with a constant laminar flow rate. After 14, 28 and 42 days of immersion the ZEK100 plates were mechanically tested via four point bending test. The surfaces of the immersed specimens were characterized by SEM, EDX and XRD. RESULTS: The four point bending test displayed an increased bending strength after 6 weeks immersion compared to the 2 week group and 4 week group. The characterization of the surface revealed the presence of high amounts of O, P and Ca on the surface and small Mg content. This indicates the precipitation of calcium phosphates with low solubility on the surface of the ZEK100 plates. CONCLUSIONS: The results of the present in vitro study indicate that ZEK100 is a potential candidate for degradable orthopedic implants. Further investigations are needed to examine the degradation behavior.


Subject(s)
Alloys/chemistry , Bicarbonates/chemistry , Biocompatible Materials/chemistry , Isotonic Solutions/chemistry , Magnesium/chemistry , Corrosion , Hydrodynamics , Immersion , Mechanical Phenomena , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...