Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791275

ABSTRACT

A comprehensive thermodynamic and structural study of the complexation affinities of tetra (L1), penta (L2), and hexaphenylalanine (L3) linear peptides towards several inorganic anions in acetonitrile (MeCN) and N,N-dimethylformamide (DMF) was carried out. The influence of the chain length on the complexation thermodynamics and structural changes upon anion binding are particularly addressed here. The complexation processes were characterized by means of spectrofluorimetric, 1H NMR, microcalorimetric, and circular dichroism spectroscopy titrations. The results indicate that all three peptides formed complexes of 1:1 stoichiometry with chloride, bromide, hydrogen sulfate, dihydrogen phosphate (DHP), and nitrate anions in acetonitrile and DMF. In the case of hydrogen sulfate and DHP, anion complexes of higher stoichiometries were observed as well, namely those with 1:2 and 2:1 (peptide:anion) complexes. Anion-induced peptide backbone structural changes were studied by molecular dynamic simulations. The anions interacted with backbone amide protons and one of the N-terminal amine protons through hydrogen bonding. Due to the anion binding, the main chain of the studied peptides changed its conformation from elongated to quasi-cyclic in all 1:1 complexes. The accomplishment of such a conformation is especially important for cyclopeptide synthesis in the head-to-tail macrocyclization step, since it is most suitable for ring closure. In addition, the studied peptides can act as versatile ionophores, facilitating transmembrane anion transport.


Subject(s)
Anions , Thermodynamics , Anions/chemistry , Peptides/chemistry , Peptides/metabolism , Hydrogen Bonding , Molecular Dynamics Simulation , Acetonitriles/chemistry , Dimethylformamide/chemistry , Circular Dichroism
2.
ACS Omega ; 8(45): 43074-43087, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024729

ABSTRACT

Novel fluorescent calix[4]arene derivatives L1 and L2 were synthesized by introducing phenanthridine moieties at the lower calixarene rim, whereby phenanthridine groups served as fluorescent probes and for cation coordination. To enhance the cation-binding ability of the ligands, besides phenanthridines, tertiary-amide or ester functionalities were also introduced in the cation-binding site. Complexation of the prepared compounds with alkali metal cations in acetonitrile (MeCN), methanol (MeOH), ethanol (EtOH), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) was investigated at 25 °C experimentally (UV spectrophotometry, fluorimetry, microcalorimetry, and in the solid state by X-ray crystallography) and by means of computational techniques (classical molecular dynamics and DFT calculations). The thermodynamic parameters (equilibrium constants and derived standard reaction Gibbs energies, reaction enthalpies, and entropies) of the corresponding reactions were determined. The tertiary-amide-based compound L1 was found to have a much higher affinity toward cations compared to ester derivative L2, whereby the stabilities of the ML1+ and ML2+ complexes were quite solvent-dependent. The stability decreased in the solvent order: MeCN ≫ EtOH > MeOH > DMF > DMSO, which could be explained by taking into account the differences in the solvation of the ligands as well as free and complexed alkali metal cations in the solvents used. The obtained thermodynamic quantities were thoroughly discussed regarding the structural characteristics of the studied compounds, as well as the solvation abilities of the solvents examined. Molecular and crystal structures of acetonitrile and water solvates of L1 and its sodium complex were determined by single-crystal X-ray diffraction. The results of computational studies provided additional insight into the L1 and L2 complexation properties and structures of the ligands and their cation complexes.

3.
Molecules ; 27(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35745042

ABSTRACT

Cyclic pentaphenylalanine was studied as an efficient anion sensor for halides, thiocyanate and oxoanions in acetonitrile and methanol. Stability constants of the corresponding complexes were determined by means of fluorimetric, spectrophotometric, 1H NMR, and microcalorimetric titrations. A detailed structural overview of receptor-anion complexes was obtained by classical molecular dynamics (MD) simulations. The results of 1H NMR and MD studies indicated that the bound anions were coordinated by the amide groups of cyclopeptide, as expected. Circular dichroism (CD) titrations were also carried out in acetonitrile. To the best of our knowledge, this is the first example of the detection of anion binding by cyclopeptide using CD spectroscopy. The CD spectra were calculated from the structures obtained by MD simulations and were qualitatively in agreement with the experimental data. The stoichiometry of almost all complexes was 1:1 (receptor:anion), except for dihydrogen phosphate where the binding of dihydrogen phosphate dimer was observed in acetonitrile. The affinity of the cyclopeptide receptor was correlated with the structure of anion coordination sphere, as well as with the solvation properties of the examined solvents.


Subject(s)
Molecular Dynamics Simulation , Peptides, Cyclic , Acetonitriles , Anions/chemistry , Peptides, Cyclic/chemistry , Phosphates
4.
Molecules ; 27(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35056784

ABSTRACT

The binding of alkali metal cations with two tertiary-amide lower-rim calix[4]arenes was studied in methanol, N,N-dimethylformamide, and acetonitrile in order to explore the role of triazole and glucose functionalities in the coordination reactions. The standard thermodynamic complexation parameters were determined microcalorimetrically and spectrophotometrically. On the basis of receptor dissolution enthalpies and the literature data, the enthalpies for transfer of reactants and products between the solvents were calculated. The solvent inclusion within a calixarene hydrophobic basket was explored by means of 1H NMR spectroscopy. Classical molecular dynamics of the calixarene ligands and their complexes were carried out as well. The affinity of receptors for cations in methanol and N,N-dimethylformamide was quite similar, irrespective of whether they contained glucose subunits or not. This indicated that sugar moieties did not participate or influence the cation binding. All studied reactions were enthalpically controlled. The peak affinity of receptors for sodium cation was noticed in all complexation media. The complex stabilities were the highest in acetonitrile, followed by methanol and N,N-dimethylformamide. The solubilities of receptors were greatly affected by the presence of sugar subunits. The medium effect on the affinities of calixarene derivatives towards cations was thoroughly discussed regarding the structural properties and solvation abilities of the investigated solvents.

SELECTION OF CITATIONS
SEARCH DETAIL
...