Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 96(3): 877-912, 2023.
Article in English | MEDLINE | ID: mdl-37927255

ABSTRACT

Alzheimer's disease (AD) is characterized by the progressive degeneration of neuronal cells. With the increase in aged population, there is a prevalence of irreversible neurodegenerative changes, causing a significant mental, social, and economic burden globally. The factors contributing to AD are multidimensional, highly complex, and not completely understood. However, it is widely known that aging, neuroinflammation, and excessive production of reactive oxygen species (ROS), along with other free radicals, substantially contribute to oxidative stress and cell death, which are inextricably linked. While oxidative stress is undeniably important in AD, limiting free radicals and ROS levels is an intriguing and potential strategy for deferring the process of neurodegeneration and alleviating associated symptoms. Therapeutic compounds from natural sources have recently become increasingly accepted and have been effectively studied for AD treatment. These phytocompounds are widely available and a multitude of holistic therapeutic efficiencies for treating AD owing to their antioxidant, anti-inflammatory, and biological activities. Some of these compounds also function by stimulating cholinergic neurotransmission, facilitating the suppression of beta-site amyloid precursor protein-cleaving enzyme 1, α-synuclein, and monoamine oxidase proteins, and deterring the occurrence of AD. Additionally, various phenolic, flavonoid, and terpenoid phytocompounds have been extensively described as potential palliative agents for AD progression. Preclinical studies have shown their involvement in modulating the cellular redox balance and minimizing ROS formation, displaying them as antioxidant agents with neuroprotective abilities. This review emphasizes the mechanistic role of natural products in the treatment of AD and discusses the various pathological hypotheses proposed for AD.


Subject(s)
Alzheimer Disease , Antioxidants , Humans , Aged , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Alzheimer Disease/pathology , Reactive Oxygen Species/metabolism , Oxidative Stress , Oxidation-Reduction
2.
Biomolecules ; 12(6)2022 06 10.
Article in English | MEDLINE | ID: mdl-35740939

ABSTRACT

Pentameric ligand-gated ion channels (pLGICs) play a leading role in synaptic communication, are implicated in a variety of neurological processes, and are important targets for the treatment of neurological and neuromuscular disorders. Endogenous lipids and lipophilic compounds are potent modulators of pLGIC function and may help shape synaptic communication. Increasing structural and biophysical data reveal sites for lipid binding to pLGICs. Here, we update our evolving understanding of pLGIC-lipid interactions highlighting newly identified modes of lipid binding along with the mechanistic understanding derived from the new structural data.


Subject(s)
Ligand-Gated Ion Channels , Binding Sites , Ligand-Gated Ion Channels/chemistry , Ligand-Gated Ion Channels/metabolism , Lipids
3.
Curr Pharm Des ; 27(45): 4610-4629, 2021.
Article in English | MEDLINE | ID: mdl-34533439

ABSTRACT

BACKGROUND: Breast cancer is the most prevalent cancer amongst females across the globe, and with over 2 million new cases reported in 2018, it poses a huge economic burden to the already dwindling public health. A dearth of therapies in the pipeline to treat triple-negative breast cancers and acquisition of resistance against the existing line of treatments urge the need to strategize novel therapeutics in order to add new drugs to the pipeline. HDAC inhibitors (HDACi) is one such class of small molecule inhibitors that target histone deacetylases to bring about chromosomal remodelling and normalize dysregulated gene expression that marks breast cancer progression. OBJECTIVE: While four HDACi have been approved by the FDA for the treatment of different cancer types, no HDACi is specifically earmarked for clinical management of breast cancer. Owing to the differential HDAC expression pertaining to different types of breast cancers, isoform-selective HDAC inhibitors need to be discovered. CONCLUSION: This review attempts to set the stage for the rational structure-based discovery of isoform-selective HDACi by providing structural insights into different HDACs and their catalytic folds based on their classes and individual landscape. The development of inhibitors in accordance with the differential expression of HDAC isoforms exhibited in breast cancer cells is a promising strategy to rationally design selective and effective inhibitors, adopting a 'personalized-medicine' approach.


Subject(s)
Histone Deacetylase Inhibitors , Triple Negative Breast Neoplasms , Female , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Humans , Protein Isoforms
4.
Crit Rev Microbiol ; 47(5): 596-611, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34407384

ABSTRACT

The human gastrointestinal (GI) tract hosts trillions of microbial inhabitants involved in maintaining intestinal homeostasis, dysbiosis of which provokes a motley of pathogenic and autoimmune disorders. While the mechanisms by which the microbiota modulates human health are manifold, their liberated metabolites from ingested dietary supplements play a crucial role by bidirectionally regulating the expression of micro-ribonucleic acids (miRNAs). miRNAs are small endogenous non-coding RNAs (ncRNAs) that have been confirmed to be involved in an interplay with microbiota to regulate host gene expression. This comprehensive review focuses on key principles of miRNAs, their regulation, and crosstalk with gut microbiota to influence host gene expression in various human disorders, by bringing together important recent findings centric around miRNA-microbiota interactions in diseases along various axis of the gut with other organs. We also attempt to lay emphasis on exploiting the avenues of gut-directed miRNA therapeutics using rudimentary dietary supplements to regulate abnormal host gene expression in diseases, opening doors to an accessible and economical therapeutic strategy.


Subject(s)
Gastrointestinal Microbiome , Gene Expression Regulation , MicroRNAs/genetics , Therapeutics , Animals , Cardiovascular Diseases/genetics , Cardiovascular Diseases/microbiology , Cardiovascular Diseases/therapy , Digestive System Diseases/genetics , Digestive System Diseases/microbiology , Digestive System Diseases/therapy , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Health , Humans , MicroRNAs/metabolism , Neoplasms/genetics , Neoplasms/microbiology , Neoplasms/therapy , Nervous System Diseases/genetics , Nervous System Diseases/microbiology , Nervous System Diseases/therapy
6.
J Glob Antimicrob Resist ; 21: 154-161, 2020 06.
Article in English | MEDLINE | ID: mdl-31622683

ABSTRACT

OBJECTIVES: The rapid emergence of hypervirulent Clostridium difficile (C. difficile) isolates and the paucity of effective anti-clostridial antibiotics call for extensive research to identify new treatment options. This study aimed to test the anti-clostridial activity of bioactive extracts of turmeric, which is a natural herb widely known for its profound medicinal properties. METHODS: The MICs of turmeric derivatives were determined against 27 C. difficile strains, including hypervirulent (BI/NAP1/027) and clinical toxigenic isolates. Additionally, their ability to inhibit C. difficile toxin production and spore formation was investigated. Furthermore, the safety profiles of turmeric derivatives regarding their effects on human gut microflora - such as Bacteroides, Lactobacillus and Bifidobacterium - were evaluated. RESULTS: Curcuminoids, the major phytoconstituents of turmeric - including curcumin, demethoxycurcumin and bisdemethoxycurcumin - inhibited growth of C. difficile at concentrations ranging from 4 to 32µg/mL. Additionally, curcuminoids showed no negative effect on major populating species of the human gut. Curcumin was more effective than fidaxomicin in inhibiting C. difficile toxin production, but less so in inhibiting spore formation. CONCLUSION: The findings suggest that curcumin has potential as an anti-clostridial agent. More work is needed to further investigate the efficacy of curcumin as a stand-alone drug or as a supplement of current drugs of choice, as it has no antagonistic activities but might overcome their drawbacks.


Subject(s)
Anti-Infective Agents , Clostridioides difficile , Curcumin , Anti-Bacterial Agents/pharmacology , Curcumin/pharmacology , Humans , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...