Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 10(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34451379

ABSTRACT

Despite a significant decline in the incidence of malaria in Myanmar recently, malaria is still an important public health concern in the country. Although Plasmodium falciparum is associated with the highest incidence of malaria in Myanmar, the proportion of P. vivax cases has shown a gradual increase in recent years. The genetic diversity of P. vivax merozoite surface protein-1 block 5-6 (pvmsp-1 ICB 5-6) in the P. vivax population of Myanmar was analyzed to obtain a comprehensive insight into its genetic heterogeneity and evolutionary history. High levels of genetic diversity of pvmsp-1 ICB 5-6 were identified in the P. vivax isolates collected from Myanmar between 2013 and 2015. Thirty-nine distinct haplotypes of pvmsp-1 ICB 5-6 (13 for Sal I type, 20 for recombinant type, and 6 for Belem type) were found at the amino acid level. Comparative analyses of the genetic diversity of pvmsp-1 ICB 5-6 sequences in the recent (2013-2015) and the past (2004) P. vivax populations in Myanmar revealed genetic expansion of the pvmsp-1 ICB 5-6 in recent years, albeit with a declined incidence. The recent increase in the genetic heterogeneity of Myanmar pvmsp-1 ICB 5-6 is attributed to a combination of factors, including accumulated mutations and recombination. These results suggest that the size of the P. vivax population in Myanmar is sufficient to enable the generation and maintenance of genetic diversity, warranting continuous molecular surveillance of genetic variation in Myanmar P. vivax.

2.
Malar J ; 19(1): 303, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32883283

ABSTRACT

BACKGROUND: Circumsporozoite surface protein (CSP) of malaria parasites has been recognized as one of the leading vaccine candidates. Clinical trials of vaccines for vivax malaria incorporating Plasmodium vivax CSP (PvCSP) have demonstrated their effectiveness in preventing malaria, at least in part. However, genetic diversity of pvcsp in the natural population remains a major concern. METHODS: A total of 171 blood samples collected from patients infected with Plasmodium vivax in Myanmar were analysed in this study. The pvcsp was amplified by polymerase chain reaction, followed by cloning and sequencing. Polymorphic characteristics and natural selection of pvcsp population in Myanmar were analysed using DNASTAR, MEGA6 and DnaSP programs. The polymorphic pattern and natural selection of publicly accessible global pvcsp sequences were also comparatively analysed. RESULTS: Myanmar pvcsp sequences were divided into two subtypes VK210 and VK247 comprising 143 and 28 sequences, respectively. The VK210 subtypes showed higher levels of genetic diversity and polymorphism than the VK247 subtypes. The N-terminal non-repeat region of pvcsp displayed limited genetic variations in the global population. Different patterns of octapeptide insertion (ANKKAEDA in VK210 and ANKKAGDA in VK247) and tetrapeptide repeat motif (GGNA) were identified in the C-terminal region of global pvcsp population. Meanwhile, the central repeat region (CRR) of Myanmar and global pvcsp, both in VK210 and VK247 variants, was highly polymorphic. The high level of genetic diversity in the CRR has been attributed to the different numbers, types and combinations of peptide repeat motifs (PRMs). Interestingly, 27 and 5 novel PRMs were found in Myanmar VK210 and VK247 variants, respectively. CONCLUSION: Comparative analysis of the global pvcsp population suggests a complex genetic profile of pvcsp in the global population. These results widen understanding of the genetic make-up of pvcsp in the global P. vivax population and provide valuable information for the development of a vaccine based on PvCSP.


Subject(s)
Plasmodium vivax/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Selection, Genetic , Adolescent , Adult , Humans , Malaria, Vivax/parasitology , Middle Aged , Myanmar , Young Adult
3.
Malar J ; 19(1): 184, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32429986

ABSTRACT

BACKGROUND: Plasmodium falciparum merozoite surface protein-3 (PfMSP-3) is a target of naturally acquired immunity against P. falciparum infection and is a promising vaccine candidate because of its critical role in the erythrocyte invasion of the parasite. Understanding the genetic diversity of pfmsp-3 is important for recognizing genetic nature and evolutionary aspect of the gene in the natural P. falciparum population and for designing an effective vaccine based on the antigen. METHODS: Blood samples collected from P. falciparum-infected patients in Naung Cho and Pyin Oo Lwin, Myanmar, in 2015 were used in this study. The pfmsp-3 was amplified by polymerase chain reaction, cloned, and sequenced. Genetic polymorphism and natural selection of Myanmar pfmsp-3 were analysed using the programs DNASTAR, MEGA6, and DnaSP 5.10.00. Genetic diversity and natural selection of the global pfmsp-3 were also comparatively analysed. RESULTS: Myanmar pfmsp-3 displayed 2 different alleles, 3D7 and K1. The 3D7 allelic type was predominant in the population, but genetic polymorphism was less diverse than for the K1 allelic type. Polymorphic characters in both allelic types were caused by amino acid substitutions, insertions, and deletions. Amino acid substitutions were mainly occurred at the alanine heptad repeat domains, whereas most insertions and deletions were found at the glutamate rich domain. Overall patterns of amino acid polymorphisms detected in Myanmar pfmsp-3 were similar in the global pfmsp-3 population, but novel amino acid changes were observed in Myanmar pfmsp-3 with low frequencies. Complicated patterns of natural selection and recombination events were predicted in the global pfmsp-3, which may act as major driving forces to maintain and generate genetic diversity of the global pfmsp-3 population. CONCLUSION: Global pfmsp-3 revealed genetic polymorphisms, suggesting that the functional and structural consequences of the polymorphisms should be considered in designing a vaccine based on PfMSP-3. Further examination of genetic diversity of pfmsp-3 in the global P. falciparum population is necessary to gain in-depth insight for the population structure and evolutionary aspect of global pfmsp-3.


Subject(s)
Antigens, Protozoan/genetics , Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Amino Acid Sequence , Humans , Myanmar , Sequence Alignment
4.
Am J Trop Med Hyg ; 102(3): 598-604, 2020 03.
Article in English | MEDLINE | ID: mdl-31833468

ABSTRACT

The emergence of artemisinin-resistant Plasmodium falciparum in the Greater Mekong Subregion threatens both the efficacy of artemisinin-based combination therapy (ACT), the first-line treatment for malaria, and prospects for malaria elimination. Monitoring of ACT efficacy is essential for ensuring timely updates to elimination policies and treatment recommendations. In 2014-2015, we assessed the therapeutic efficacies of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) for the treatment of uncomplicated P. falciparum at three study sites in Rakhine, Shan, and Kachin states in Myanmar. Patients presenting with uncomplicated P. falciparum malaria were enrolled, treated, and followed up for 28 days for AL or 42 days for DP. Both AL and DP demonstrated good therapeutic efficacy at all three study sites. The 28-day cure rate for AL was > 96% across all study sites, and the 42-day cure rate for DP was 100%. Parasitemia on day 3 was detected in 0%, 3.3%, and 3.6% of participants treated with AL at the Rakhine, Shan, and Kachin sites, respectively. No participants treated with DP were parasitemic on day 3. No evidence of P. falciparum k13 mutations was found at the Rakhine study site. A high prevalence of k13 mutations associated with artemisinin resistance was observed at the Kachin and Shan state study sites. These results confirm that ACT efficacy has been resilient in therapeutic efficacy study (TES) sentinel sites in Myanmar, despite the presence at some sites of k13 mutations associated with resistance. Studies are ongoing to assess whether this resilience persists.


Subject(s)
Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Quinolines/therapeutic use , Adolescent , Adult , Antimalarials/administration & dosage , Antimalarials/therapeutic use , Artemisinins/administration & dosage , Child , Drug Combinations , Female , Genotype , Humans , Malaria, Falciparum/epidemiology , Male , Middle Aged , Myanmar/epidemiology , Plasmodium falciparum/genetics , Quinolines/administration & dosage , Young Adult
5.
Acta Trop ; 198: 105104, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31336059

ABSTRACT

Transmission-blocking vaccines (TBVs) target the sexual stages of malarial parasites to interrupt or reduce the transmission cycle have been one of approaches to control malaria. Pvs25 and Pvs28 are the leading candidate antigens of TBVs against vivax malaria. In this study, genetic diversity and natural selection of the two TBV candidate genes in Plasmodium vivax Myanmar isolates were analyzed. The 62 Myanmar P. vivax isolates showed 9 and 19 different haplotypes for Pvs25 and Pvs28, respectively. The nucleotide diversity of Pvs28 was slightly higher than Pvs25, but not significant. Most amino acid substitutions observed in Myanmar Pvs25 and Pvs28 were concentrated at the EGF-2 and EGF-3 like domains. Major amino acid changes found in Myanmar Pvs25 and Pvs28 were similar to those reported in the global population, but novel amino acid substitutions were also identified. Negative selection was predicted in Myanmar Pvs25, whereas Pvs28 was under positive selection. Comparative analysis of global Pvs25 and Pvs28 suggests a substantial geographical difference between the Asian and American/African Pvs25 and Pvs28. The geographical genetic differentiation and the evidence for natural selection in global Pvs25 and Pvs28 suggest that the functional consequences of the observed polymorphism need to be considered for the development of effective TBVs based on the antigens.


Subject(s)
Antigens, Protozoan/genetics , Malaria Vaccines/immunology , Malaria, Vivax/prevention & control , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Selection, Genetic , Amino Acid Substitution , Antigens, Protozoan/immunology , Antigens, Surface , DNA, Protozoan/genetics , Haplotypes , Humans , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Myanmar/epidemiology , Polymorphism, Genetic
6.
Malar J ; 17(1): 361, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30314440

ABSTRACT

BACKGROUND: Plasmodium falciparum circumsporozoite protein (PfCSP) is one of the most extensively studied malaria vaccine candidates, but the genetic polymorphism of PfCSP within and among the global P. falciparum population raises concerns regarding the efficacy of a PfCSP-based vaccine efficacy. In this study, genetic diversity and natural selection of PfCSP in Myanmar as well as global P. falciparum were comprehensively analysed. METHODS: Blood samples were collected from 51 P. falciparum infected Myanmar patients. Fifty-one full-length PfCSP genes were amplified from the blood samples through a nested polymerase chain reaction, cloned into a TA cloning vector, and then sequenced. Polymorphic characteristics and natural selection of Myanmar PfCSP were analysed using the DNASTAR, MEGA6, and DnaSP programs. Polymorphic diversity and natural selection in publicly available global PfCSP were also analysed. RESULTS: The N-terminal and C-terminal non-repeat regions of Myanmar PfCSP showed limited genetic variations. A comparative analysis of the two regions in global PfCSP displayed similar patterns of low genetic diversity in global population, but substantial geographic differentiation was also observed. The most notable polymorphisms identified in the N-terminal region of global PfCSP were A98G and 19-amino acid length insertion in global population with different frequencies. Major polymorphic characters in the C-terminal region of Myanmar and global PfCSP were found in the Th2R and Th3R regions, where natural selection and recombination occurred. The central repeat region of Myanmar PfCSP was highly polymorphic, with differing numbers of repetitive repeat sequences NANP and NVDP. The numbers of the NANP repeats varied among global PfCSP, with the highest number of repeats seen in Asian and Oceanian PfCSP. Haplotype network analysis of global PfCSP revealed that global PfCSP clustered into 103 different haplotypes with geographically-separated populations. CONCLUSION: Myanmar and global PfCSP displayed genetic diversity. N-terminal and C-terminal non-repeat regions were relatively conserved, but the central repeat region displayed high levels of genetic polymorphism in Myanmar and global PfCSP. The observed geographic pattern of genetic differentiation and the points of evidence for natural selection and recombination suggest that the functional consequences of the polymorphism should be considered for developing a vaccine based on PfCSP.


Subject(s)
Malaria, Falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Selection, Genetic , Myanmar , Protozoan Proteins/metabolism
7.
Malar J ; 17(1): 71, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29415731

ABSTRACT

BACKGROUND: Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is one of leading blood stage malaria vaccine candidates. However, genetic variation and antigenic diversity identified in global PfAMA-1 are major hurdles in the development of an effective vaccine based on this antigen. In this study, genetic structure and the effect of natural selection of PfAMA-1 among Myanmar P. falciparum isolates were analysed. METHODS: Blood samples were collected from 58 Myanmar patients with falciparum malaria. Full-length PfAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. PfAMA-1 sequence of each isolate was sequenced. Polymorphic characteristics and effect of natural selection were analysed with using DNASTAR, MEGA4, and DnaSP programs. Polymorphic nature and natural selection in 459 global PfAMA-1 were also analysed. RESULTS: Thirty-seven different haplotypes of PfAMA-1 were identified in 58 Myanmar P. falciparum isolates. Most amino acid changes identified in Myanmar PfAMA-1 were found in domains I and III. Overall patterns of amino acid changes in Myanmar PfAMA-1 were similar to those in global PfAMA-1. However, frequencies of amino acid changes differed by country. Novel amino acid changes in Myanmar PfAMA-1 were also identified. Evidences for natural selection and recombination event were observed in global PfAMA-1. Among 51 commonly identified amino acid changes in global PfAMA-1 sequences, 43 were found in predicted RBC-binding sites, B-cell epitopes, or IUR regions. CONCLUSIONS: Myanmar PfAMA-1 showed similar patterns of nucleotide diversity and amino acid polymorphisms compared to those of global PfAMA-1. Balancing natural selection and intragenic recombination across PfAMA-1 are likely to play major roles in generating genetic diversity in global PfAMA-1. Most common amino acid changes in global PfAMA-1 were located in predicted B-cell epitopes where high levels of nucleotide diversity and balancing natural selection were found. These results highlight the strong selective pressure of host immunity on the PfAMA-1 gene. These results have significant implications in understanding the nature of Myanmar PfAMA-1 along with global PfAMA-1. They also provide useful information for the development of effective malaria vaccine based on this antigen.


Subject(s)
Antigens, Protozoan/genetics , Genetic Variation , Membrane Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Selection, Genetic , Adolescent , Adult , Amino Acid Sequence , Antigens, Protozoan/chemistry , Haplotypes , Humans , Membrane Proteins/chemistry , Middle Aged , Myanmar , Protozoan Proteins/chemistry , Young Adult
8.
Malar J ; 16(1): 119, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28302168

ABSTRACT

BACKGROUND: Accurate diagnosis of Plasmodium infection is crucial for prompt malaria treatment and surveillance. Microscopic examination has been widely applied as the gold standard for malaria diagnosis in most part of malaria endemic areas, but its diagnostic value has been questioned, particularly in submicroscopic malaria. In this study, the diagnostic performance of microscopic examination and nested polymerase chain reaction (PCR) was evaluated to establish optimal malaria diagnosis method in Myanmar. METHODS: A total of 1125 blood samples collected from residents in the villages and towns located in Naung Cho, Pyin Oo Lwin, Tha Beik Kyin townships and Mandalay of Upper Myanmar were screened by microscopic examination and species-specific nested PCR method. RESULTS: Among the 1125 blood samples, 261 samples were confirmed to be infected with malaria by microscopic examination. Evaluation of the 1125 samples by species-specific nested PCR analysis revealed that the agreement between microscopic examination and nested PCR was 87.3% (261/299). Nested PCR successfully detected 38 Plasmodium falciparum or Plasmodium vivax infections, which were missed in microscopic examination. Microscopic examinations also either misdiagnosed the infected Plasmodium species, or did not detect mixed infections with different Plasmodium species in 31 cases. CONCLUSIONS: The nested PCR method is more reliable than conventional microscopic examination for the diagnosis of malaria infections, and this is particularly true in cases of mixed infections and submicroscopic infections. Given the observed higher sensitivity and specificity of nested PCR, the molecular method holds enormous promise in malaria diagnosis and species differentiation, and can be applied as an effective monitoring tool for malaria surveillance, control and elimination in Myanmar.


Subject(s)
Malaria, Falciparum/diagnosis , Malaria, Vivax/diagnosis , Microscopy/standards , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Polymerase Chain Reaction/standards , Humans , Myanmar , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...