Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 78(23): 7451-7468, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34718827

ABSTRACT

In human metabolism, pyruvate dehydrogenase complex (PDC) is one of the most intricate and large multimeric protein systems representing a central hub for cellular homeostasis. The worldwide used antiepileptic drug valproic acid (VPA) may potentially induce teratogenicity or a mild to severe hepatic toxicity, where the underlying mechanisms are not completely understood. This work aims to clarify the mechanisms that intersect VPA-related iatrogenic effects to PDC-associated dihydrolipoamide dehydrogenase (DLD; E3) activity. DLD is also a key enzyme of α-ketoglutarate dehydrogenase, branched-chain α-keto acid dehydrogenase, α-ketoadipate dehydrogenase, and the glycine decarboxylase complexes. The molecular effects of VPA will be reviewed underlining the data that sustain a potential interaction with DLD. The drug-associated effects on lipoic acid-related complexes activity may induce alterations on the flux of metabolites through tricarboxylic acid cycle, branched-chain amino acid oxidation, glycine metabolism and other cellular acetyl-CoA-connected reactions. The biotransformation of VPA involves its complete ß-oxidation in mitochondria causing an imbalance on energy homeostasis. The drug consequences as histone deacetylase inhibitor and thus gene expression modulator have also been recognized. The mitochondrial localization of PDC is unequivocal, but its presence and function in the nucleus were also demonstrated, generating acetyl-CoA, crucial for histone acetylation. Bridging metabolism and epigenetics, this review gathers the evidence of VPA-induced interference with DLD or PDC functions, mainly in animal and cellular models, and highlights the uncharted in human. The consequences of this interaction may have significant impact either in mitochondrial or in nuclear acetyl-CoA-dependent processes.


Subject(s)
Dihydrolipoamide Dehydrogenase/metabolism , Histone Deacetylase Inhibitors/adverse effects , Iatrogenic Disease , Pyruvate Dehydrogenase Complex/metabolism , Valproic Acid/adverse effects , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Acetyl Coenzyme A/biosynthesis , Acetylation , Animals , Glycine Dehydrogenase (Decarboxylating)/metabolism , Humans , Ketoglutarate Dehydrogenase Complex/metabolism , Ketone Oxidoreductases/metabolism , Liver/pathology , Mitochondria/metabolism , Oxidation-Reduction/drug effects , Teratogens/metabolism
2.
Anal Biochem ; 535: 47-55, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28757091

ABSTRACT

Current methodologies for the assessment of urea cycle (UC) enzymatic activity are insufficient to accurately evaluate this pathway in biological specimens where lower UC is expected. Liver cell lines, including HepaRG, have been described to have limited nitrogen fixation through the UC, limiting their applicability as biocomponents for Bioartificial Livers (BAL). This work aims to develop novel and sensitive analytical solutions using Mass Spectrometry-based methodology to measure the activity of four UC enzymes in human liver and HepaRG cells. Activity of carbamoyl-phosphate synthetase I (CPS I), ornithine transcarbamylase (OTC), argininosuccinate lyase (ASL) and arginase (ARG I and II) was determined on homogenates from normal human liver and HepaRG cells cultured in monolayer or in the AMC-BAL. Enzyme products were determined by stable-isotope dilution UPLC-MS/MS. Activity of CPS I, OTC and ARG I/II enzymes in HepaRG monolayer cultures was considerably lower than in human control livers albeit an increase was achieved in HepaRG-BAL cultures. Improved analytical assays developed for the study of UC enzyme activity, contributed to gain understanding of UC function in the HepaRG cell line. The decreased activity of CPS I suggests that it may be a potential rate-limiting factor underlying the low UC activity in this cell line.


Subject(s)
Arginase/metabolism , Argininosuccinate Lyase/metabolism , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Liver/enzymology , Liver/metabolism , Ornithine Carbamoyltransferase/metabolism , Urea/metabolism , Cell Line, Tumor , Chromatography, High Pressure Liquid , Humans , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...