Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 27(1): 25-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24118420

ABSTRACT

When two species come into contact and interbreed, the production of unfit hybrids can limit or prevent gene flow between the populations, thus maintaining each species' separate identity. The genetic basis of this hybrid dysfunction has recently begun to be elucidated, particularly for hybrid sterility and inviability. Although these dysfunctions can certainly act as a barrier to gene flow, other post-zygotic barriers may also play an important role in isolating species from one another. This study examines the genetic basis of the more subtle mechanism of species isolation via a marked reduction in lifespan of interspecies hybrid offspring. We found that females with homozygous X chromosomes in an otherwise interspecies hybrid background displayed a significant reduction in lifespan; this effect is not due to genetic background and appears to arise from complex genetic interactions. Separately, there is an additional severe reduction in lifespan for attached-X females when they have mated with males of either parental species, which is partly due to interspecific genetic interactions, but primarily due to a female's increased sensitivity to mating when bearing a Y chromosome or the attached-X chromosome construct.


Subject(s)
Drosophila simulans/genetics , Hybridization, Genetic , Longevity/genetics , Reproductive Isolation , Sex Chromosomes , Animals , Female , Male
2.
J Evol Biol ; 25(9): 1718-31, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22694106

ABSTRACT

Behavioural differences are thought to be the first components to contribute to species isolation, yet the precise genetic basis of behavioural isolation remains poorly understood. Here, we used a combination of behaviour assays and genetic mapping to provide the first refined map locating candidate genes for interspecific female preference isolating Drosophila simulans from D. melanogaster. First, we tested whether two genes identified as affecting D. melanogaster female intraspecific mate choice also affect interspecific mate choice; neither of these genes was found to contribute to species-specific female preference. Next, we used deficiency mapping to locate genes on the right arm of the third chromosome for species-specific female preference and identified five small significant regions that contain candidate genes contributing to behavioural isolation. All five regions were located in areas that would have low interspecific recombination, which mirrors the results of other behavioural isolation studies that used quantitative trait locus (QTL) mapping, but without the potential concern of bias towards regions of low recombination that QTL mapping may have. As this model system may be refined to the individual gene level using the same methodology, this initial map we provide may potentially serve as a ready template for the identification and characterization of the first behavioural isolation genes.


Subject(s)
Chromosome Mapping/methods , Drosophila/genetics , Genes, Insect , Mating Preference, Animal/physiology , Animals , Chromosomes, Insect/genetics , Courtship , Drosophila/physiology , Female , Genetic Speciation , Male , Quantitative Trait Loci , Recombination, Genetic , Reproductive Isolation , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...